
337

poster

a morphological approach
to interactive storytelling
Dieter Grasbon (dieter@grasbon.com), Norbert Braun (norbert.braun@zgdv.de)
Digital Storytelling Department, Computer Graphics Center, Darmstadt, Germany

Abstract

Few attempts have yet been made to implement a story
engine for guiding interactive drama. Most of them rely on the
computer’s ability to generate the story in full detail. By
focusing on story guidance at the level of morphological
functions as defined by Russian formalist Vladimir Propp, we
take a different approach. We do not attempt to provide a
model for generating stories in detail. Instead, we expect
human authors to create specific interactive scenarios for each
function in advance. Our primary concerns are high-level
guidance of plot, as well as finding the best compromise
between author input and machine generation. By providing
access to the story model itself, we allow authors to control
the story at all levels of detail. Our first prototype features a
wide variety of plots being generated from a limited number
of scenes.

KKKKeeeeyyyywwwwoooorrrrddddssss:::: story engine, nonlinear, interactive storytelling,
narrative intelligence, Propp

PPPPrrrroooojjjjeeeecccctttt UUUURRRRLLLL::::
http://www.zgdv.de/zgdv/departments/z5

Introduction

Story engines are tools that tell interactive stories. It is
evident that static narrative structures are in conflict with
interactivity. Interactive storytelling is a live experience.
Therefore, we need a run-time engine taking care of the user’s
experience as the story keeps unfolding.

Interactive drama is the class of narratives generated by
story engines. In most cases, it allows the user to step into the
role of the protagonist and witness the events from a first
person perspective.

In recent years, several interactive storytelling systems
have been developed. The Erasmatron, a story engine
developed and implemented by C. Crawford, is based on a
sophisticated world model. It seeks to balance character-
based and plot-based approaches by using verbs as the basic
components of action. Crawford does not believe in story
generation through algorithms and therefore plans for the
author to create a useful set of verbs that the engine can work
with [1]. When designing a story engine for the DEFACTO
project, N. M. Sgouros followed a different approach. Using a
rule-based system, he aimed at shaping interactive plot into
the structure of Aristotelian drama by modeling rising conflict
between the characters [2]. M. Mateas and A. Stern are
working on an interactive story world. They define beats as
the basic units of plot and interaction [3].

All of these approaches control the plot at a very detailed
level. The advantage of these designs lies in providing the
user with frequent opportunities for influencing the plot.
Although this is obviously an important goal for interactive
storytelling, we feel technology does not yet provide us with
means to create meaningful stories under this condition.

In this paper, we will describe a different approach to
interactive storytelling. We have chosen to deal with
interactive plot at a higher level – the level of morphological
functions as defined by Russian formalist V. Propp [4]. Our
story engine is designed for a mixed reality scenario in which
the user wanders through physical space while wearing
augmented reality devices.

338

Adaptation to user preferences

It is difficult for us to imagine the potentials of
interactive narrative, because we grew up with linear media.
One of the opportunities we envision is shaping the overall
experience according to the needs of the user. If films can be
classified in regard to violence, language and sexual activity,
this should be possible for the elements of interactive stories,
as well. We have implemented a system that chooses which
scenes to show according to the age and preferences of the
user. By not offending the personal tastes of the audience, we
believe emotional immersion can be improved.

The story model

P. Sengers points out that narratives are always
particular [5]. It is in the details that the shaping influence of
the author becomes visible. We do not believe that machines
are able to create convincing details. Therefore, we have
decided to put the responsibility of generation at scene level
and below entirely into the hands of the author. This is a
critical decision in our design, since it has some major
drawbacks. We cannot expect human authors to write more
than a few dozen scenes, as well as the rules defining their
flow. Basically, a small number of scenes are all that our
engine can work with. However, we believe that even under
these restrictions, our system features a sufficient variety of
engaging plots.

The story model of our prototype is based on V. Propp’s
“Morphology of the folktale”, which was written in 1928. As
the basis of his study, he used an arbitrary sample of 100
Russian fairy tales. As mentioned by S. Bringsjord and D.
Ferrucci [6], Propp’s system of classification inspired research
on story grammars, one of the fundamental approaches to
story generation. Since our goal is not story generation, but
rather guiding interactive drama, we use Propp’s work to
create rules and algorithms for the run-time engine instead of
defining a grammar. The application of Propp’s morphological
approach to interactive storytelling was suggested and
sketched by J. Murray [7].

Propp defines function as follows: “Function must be
taken as an act of dramatis personae, which is defined from
the point of view of its significance for the course of action of a
tale as a whole” [4]. Propp uses capital letters to denote
functions. For example, “A” represents a function in which the
villain causes harm or injury: In Star Wars, Luke's foster
parents are killed. Later, the protagonist is tested by a
potential donor (function D). Depending on his reaction (E), he
is either given a magical agent (F) or not. It is important to
note that one and the same action can have different functions
depending on the context of the surrounding plot. Thus,
functions are independent of the specific characters, as well as
of the particular actions that perform them.

We have chosen to implement Propp’s system for a
variety of reasons. B. Linane-Mallon and B. R. Webb argue
that the elements of stories are highly interrelated [8]. P.
Sengers [5] points out that the cause and effect of narrative
events are more important than the events themselves.
Therefore, it seems that stories cannot be divided into discrete
modules. We believe Propp has solved this problem by
defining functions in the context of the surrounding story.

Sengers also notes that narratives are specific to their
culture. By starting out with a model based on fairy tales, we
believe to have minimized cultural barriers of understanding,
since fairy tales and myths are known to be very similar
across different cultures [9]. However, we encourage the

author to reinvent the story model according to the specific set
of stories that are to be told.

Comparing Propp’s classification of plots to other
approaches, e.g. [10], we see its primary advantage in the fact
that it integrates all possible variants in one unified model,
making it especially applicable to interactive storytelling.
Instead of viewing different plots as distinct and linear
entities, Propp’s classification is continuously aware of the
storyteller’s branching possibilities between morphological
variants.

Architecture

Figure 1: Schematic diagram of the architecture

Figure 1 gives an overview of our system. Modules in
bold borders have been implemented in the prototype. It
consists of the story engine, a story model and a small number
of scenes. In the system we envision, interface and rendering
modules separate the story engine from the user, making the
engine independent of input (keyboard, tracking, …) and
output (text, animation, …) modalities. The interface module
translates user interactions into semantic abstractions that the
engine can work with. The user model stores static, as well as
dynamic data, on the player. Static information includes age,
gender and preferences of the user. Dynamic information is
derived by processing user interaction and then concluding if
the player is bored, entertained or overloaded by the material
presented. The engine uses both kinds of data when choosing
the next content to be shown. N. Szilas [11] has suggested a
similar user model.

The author exerts direct influence on every part of the
system except the story engine and user model. First, the
author modifies the story model according to the set of stories
that are to be told. Then, detailed descriptions of a number of
scenes are created. Finally, the author designs the appearance
of the interface and influences the way in which characters
and scenes are rendered. Each scene has to correspond with a
function in the story model and is annotated with information
about its minimum and maximum duration, context req-
uirements, characters, setting, levels of violence, etc., unless
these factors are generic.

The scene engine plays scenes that the story engine has
selected. User interaction is analyzed and mapped to a story
act, which is handed back as a scene result to the story engine.
In case of the prototype, scene content is displayed by text
output only. Here, the player directly chooses the desired
story act from a set of multiple choices.

339

Levels of abstraction

The story engine works with two levels of abstraction. At
the upper level, a sequence of functions is selected in real-
time. We use the term function in the same way as Propp
does, as an abstraction from characters, setting and action
while emphasizing the function’s role in the surrounding plot.
User interaction and other constraints can result in functions
being skipped, as well as in the choice of a different variant of
a specific function. At the lower level, a particular scene is
executed for each function. They are either being generated or
have been authored in advance.

We see functions as classes, and scenes as instances of
those classes. A scene possesses unity of time, space and
action, thus facilitating temporal, spatial and emotional
immersion of the user. Between one scene and the next, leaps
in time are possible and even desirable, since we do not want
to bother the player with less exciting events.

Polymorphic functions

User interaction cannot change the morphological
function of most scenes after their beginning. However, we
have implemented a few polymorphic functions. Our
conception of polymorphic functions was inspired by the
notion of polymorphic beats, introduced by M. Mateas and A.
Stern at a different level of detail. They refer to the most basic
elements of action, which can have different outcomes
depending on user interaction [3]. We are referring to scenes
composed of a number of actions at a specific location. When
the user enters a scene that corresponds to a polymorphic
function, its outcome is not yet determined. It is important to
note that by outcome, we do not mean the content of the scene
(which we allow to be flexible in case of non-polymorphic
functions as well), but rather its function for the overall story.
Thus, user interaction and other dynamic factors influence
which morphological variant is chosen for the scene after its
execution.

We have implemented polymorphic functions for the
outcome of attempts of villainy (function “A” in Propp's
system) and for the reaction of the hero to riddles and tests
(E). User interaction decides if these functions succeed or fail,
which has direct consequences for the remaining plot. If we
need these functions to succeed (as in case of villainy), we
either repeat them with different scenes or choose a non-
polymorphic variant with the desired outcome.

Scene Selection

Selecting the relevant parts and leaving out the boring
ones is the essence of storytelling. In our case, we assume the
author is mindful that every written scene is relevant.
Therefore, the engine needs different criteria for selecting the
scenes to follow at any given time.

Figure 2: A section of the story space

First of all, some constraints are encoded with the
functions that the scenes perform. Figure 2 shows a section of
the story space. The section is traversed from left to right
while each square represents a function. It is important to
note that the connections between them are not fixed, but
rule-based. Propp discovered that any function D can follow
function A, but each D requires a specific E. Furthermore, D
and E can be repeated in some cases or even skipped
altogether. We intend to use this kind of visualization for the
authoring environment. The squares could be filled with
sketches of scenes fulfilling the function and be connected by
the author in an intuitive way. Using the sketches, a variety of
(linear) storyboards could be generated according to different
user interactions.

Our second criterion is time. The user chooses a certain
time frame for the overall experience that has to be met. If the
player’s pace of interaction is very slow, many functions will
be skipped. User timing, therefore, has an indirect effect on
the remaining plot. Before selecting a scene, the engine
checks whether it can be played in the remaining time. If the
function of the scene requires other functions to follow, the
durations of their corresponding scenes have to be taken into
account, as well. With each scene description, the author has
to encode an interval of its shortest and longest possible
duration.

Concerning our augmented reality scenario, the number
of possible scenes is further reduced by the current location of
the user in physical space (unless scenes can be generated for
each setting from templates). The user will feel immersed in
the story, because it keeps unfolding wherever (s)he goes.

Yet another criterion is the current context of the story.
The author encodes a list of context requirements with each
scene description. Scenes can create new context (i.e. if they
introduce characters to the story). They can require context to
be present (i.e. a certain type of misfortune) and they can
remove context (i.e. if that misfortune is liquidated).

Furthermore, the user model’s current state is taken into
account. If the player is a kid, the engine will avoid showing
violent scenes. If the user seems bored, the system will prefer
scenes labeled as exciting. On the other hand, if the player
seems overloaded by the material presented, the engine will
select less demanding scenes. If the system is still left with a
set of choices after processing these criteria, a random
decision is made.

Implementation

Our current prototype is written in Prolog, which we have
chosen due to its rapid prototyping capabilities. The story
model is implemented as a meta-program and a set of rules.
Morphological functions are executed as operations of the
meta-program. A repeat-until instruction is supported as well.
It can be used to ensure that the attempt of villainy eventually
succeeds. Rules define the interrelationship between different
functions, such as implication and exclusion.

The story engine consists of a meta-interpreter that
processes the meta-program encoded in the story model. If the
current instruction is a morphological function, the system
checks if it can be played in the remaining time. Using a
forward propagation algorithm, it takes into account the
duration of each implied function as well. If enough time is
left for the current function, all matching scenes are screened
according to the other criteria described above. If no scene
meets the requirements, the function is skipped and the
interpreter proceeds to the next instruction of the meta-
program. Otherwise the selection is handed over to the scene

340

engine for execution. After the scene has been played, poly-
morphic functions are instantiated with the story act of the
player. Then, the story engine updates dynamic context as
well as a list of required functions in the database. Finally, the
meta-interpreter steps to the next in-struction of the meta-
program. A detailed description is given in [12].

Shortcomings and limitations

Our current prototype has a variety of limitations that we
hope to overcome in the future. Several modules have not yet
been implemented. However, the story engine can be tested
using text in- and output. Unfortunately, the author has to
write each scene by hand. It would be desirable to generate
scenes on demand. Due to our split-level approach, this issue
does not affect the overall design: It does not change the
corresponding function if a scene like villainy(abduction,
dragon, princess, castle) has been pre-authored or is
generated from scratch.

Conclusions and future work

We consider high-level guidance of plot to be the
primary concern of our design. Morphological functions
provide us with means of abstraction that respect the story
context. Our approach allows for authorial control at all levels
while generating a large variety of plots. We have adapted
Propp’s model for interactive storytelling. This was achieved
by introducing polymorphic functions, dynamic context and
time management. Players evaluate the system’s output as
coherent, engaging and varied while being well adapted to
their interaction. Future work will focus on the
implementation of the remaining modules.

References

[1] C. CRAWFORD, Assumptions underlying the Erasmatron
interactive storytelling engine, in Proceedings of the
AAAI Fall Symposium on Narrative Intelligence, 1999.

[2] N. M. SGOUROS, Dynamic Generation, Management and
Resolution of Interactive Plots, in Artificial Intelligence
107(1), 1999, pp. 29-62.

[3] M. MATEAS AND A. STERN, Towards Integrating Plot and
Character for Interactive Drama, in K. Dautenhahn, (Ed.),
Proceedings of the 2000 Fall Symposium: Socially
Intelligent Agents: The Human in the Loop, AAAI Press,
Menlo Park, CA, pp. 113-118.

[4] V. PROPP, Morphology of the Folktale, in International
Journal of American Linguistics, Vol. 24, Nr. 4, Part III,
Bloomington, IN, 1958.

[5] P. SENGERS, Narrative Intelligence, in K. Dautenhahn,
(Ed.), Human Cognition and Social Agent Technology,
Advances in Consciousness Series, John Benjamins
Publishing Company, Philadelphia, PA, 2000.

[6] S. BRINGSJORD AND D. FERRUCCI, Artificial Intelligence
and Literary Creativity: Inside the Mind of Brutus, A
Storytelling Machine, Lawrence Erlbaum, Mahwah, NJ,
1999.

[7] J. MURRAY, Hamlet on the Holodeck: The Future of
Narrative in Cyberspace, MIT Press, Cambridge, MA, 1998.

[8] B. LINANE-MALLON AND B. R. WEBB, Evaluating
Narrative in Multimedia, in DSV-IS’97, 4th International
Eurographics Workshop, Granada, Spain, 4-6 June, 1997,
pp. 83-98.

[9] E. FROMM, The Forgotten Language: An Introduction to
the Understanding of Dreams, Fairy Tales and Myths,
Grove Press, New York, NY, 1957.

[10] R. B. TOBIAS, 20 Masterplots: Woraus Geschichten
gemacht sind, Zweitausendeins, Frankfurt a. M., 1999.

[11] N. SZILAS, Interactive Drama on Computer: Beyond
Linear Narrative, in Proceedings of the AAAI Fall
Symposium on Narrative Intelligence, 1999.

[12] D. GRASBON, Konzeption und prototypische
Implementation einer Storyengine: Dynamisch-reaktives
System zum Erzählen nichtlinear-interaktiver
Geschichten bei größtmöglicher Spannung, gedanklicher
Immersion, Identifikation und Motivation des Spielers,
diploma thesis, Technical University of Darmstadt, 2001.

