Evolving Virtual Creatures

Karl Sims

Thinking Machines Corporation
(No longer there)

Abstract calculated automaticallyr it can instead be provided interactively
This paper describes a novel system for creating virtual creatureddy a user Interactive evolution allows procedurally generated
that move and behave in simulated three-dimensional physicalresults to be explored by simply choosing those that are the most
worlds. The morphologies of creatures and the neural systems foresthetically desirable for each generation [2,18,19,21].
controlling their muscle forces are both generated automatically The user sacrifices some control when using these methods,
using genetic algorithms. Défrent fitness evaluation functions are especially when the fitness is procedurally defined. Howélver
used to direct simulated evolutions towards specific behaviorspotential gain in automating the creation of complexity can often
such as swimming, walking, jumping, and following. compensate for this loss of control, and a higher level of user influ-
A genetic language is presented that uses nodes and conneence is still maintained by the fitness criteria specification.
tions as its primitive elements to represent directed graphs, which In several cases, optimization has been used to automatically
are used to describe both the morphology and the neural circuitrygenerate dynamic control systems for given articulated structures:
of these creatures. This genetic language defines a hyperspace code Garis has evolved weight values for neural networks [4], Ngo
taining an indefinite number of possible creatures with behaviors,and Marks have performed genetic algorithms on stimulus-
and when it is searched using optimization techniques, a variety ofresponse pairs [14], and van de Panne and Fiume have optimized
successful and interesting locomotion strategies genesome of sensofactuator networks [15]. Each of these methods has resulted

which would be dfiicult to invent or build by design. in successful locomotion of two-dimensional stick figures.
The work presented here is related to these projects, bersdif
1 Introduction in several respects. In previous work, control systems were gener-

ated for fixed structures that were udesigned, but here entire

creatures are evolved: the optimization determines the creature

esting or realistic virtual entities and still maintain control over morp’hologles as well as_thelr (_:ontrol systems. Als_o, here the crea-
tures’ bodies are three-dimensional and fully physically based. The

them. Sometimes it is di€ult to build a complex virtual world at three-dimensional physical structure of a creatur n adaot o it
all, if it is necessary to conceive, design, and assemble each com- ee-dimensional physical structure ot a creature can adapt to its

ponent. An example of this tradefd$ that of kinematic control control S¥SteT’ a;nd vut:e versa, als they evloltvel tcégi:'ﬂ\er_ ne;r-b th
vs. dynamic simulation. If we directly provide the positions and vous systems of creatures are also completely determined by the

angles for moving objects, we can control each detail of their optimization: the number of internal nodes, the conneciiaityl

behavior but it might be dficult to achieve physically plausible the type of function each neural node performs are included in the

motions. If we instead provide forces and torques and simulate theqenetlc d?s;?rlptlon of ZaCh ;:eamre, and can ?r:OW n cor_1t1preX|ty
resulting dynamics, the result will probably look correct, but then as an evolution proceedgethey these remove the necessity for

it can be very dffcult to achieve the desired behayiespecially a user to provide any specific creature information such as shape,
as the objects we want to control become more complex MethodsSize’ joint constraints, sensors, actuators, or internal neural param-
have been developed for dynamically controlling specific objects eters. Flnallyhere.a developmental process is us.ed.to generate the
to successfully crawl, walk, or even rur[12,16], but a new con- creatures and their control systems, and allows similar components

trol algorithm must be carefully designed each time a new behay-including their local neural circuitry to be defined once and then
ior or morphology is desired replicated, instead of requiring each to be separately specified.

Optimization techniques fafr possibilities for the automatic This approach is related to L-systems, graftal grammars, and

generation of complexityrhe genetic algorithm is a form of artifi- ObJ'Ie?t instancing techniquss L(?‘,Eli,lq,lls,ZO]. o
cial evolution, and is a commonly used method for optimization. A tis convenient to use the biological tergenotypeandpheno-

Darwinian “survival of the fittest” approach is employed to search type when qhscussmg ar't|f|0|fa1l (_av_olutlon. genotypels a_coded .
for optima in lage multidimensional spaces [5,7]. Genetic algo- representation of a possible individual or problem solution. In bio-

rithms permit virtual entities to be created without requiring an Ioglcalhsy_stems, f’slgerfmtyﬁe ldS USlllally Compfosed of Dl\(lgA and con-
understanding of the procedures or parameters used to generaf@ns the instructions for the development of agaarsm. Genetic

them. The measure of successfitmess of each individual can be algorithms typically use populations of genotypes consisting of
strings of binary digits or parameters. These are read to produce

phenotypesvhich are then evaluated according to some fitness cri-
teria and selectively reproduced. New genotypes are generated by
copying, mutating, and/or combining the genotypes of the most fit

Published in: . . individuals, and as the cycle repeats the population should ascend
Computer GraphigsAnnual Conference Series, to higher and higher levels of fitness.

(SIGGRAPH ‘94 Proceedings), July 1994, pp.15-22. Variable length genotypes such as hierarchical Lisp expressions

A classic trade-dfin the field of computer graphics and animation
is that of complexity vs. control. It is often filiult to build inter-

or other computer programs can be useful in expanding the set oflefinedroot-nodeand synthesizing parts from the node informa-
possible results beyond a predefined genetic space of fixed dimention while tracing through the connections of the graph. The graph
sions. Genetic languages such as these allow new parameters ar@én be recurrent. Nodes can connect to themselves or in cycles to
new dimensions to be added to the genetic space as an evolutioform recursive or fractal like structures. They can also connect to
proceeds, and therefore define rathenyperspaceof possible the same child multiple times to make duplicate instances of the
results. This approach has been used to genetically program solusame appendage.
tions to a variety of problems [1,9], as well as to explore procedur- Each node in the graph contains information describing a rigid
ally generated images and dynamical systems [18,19]. part. Thedimensiongdetermine the physical shape of the part. A
In the spirit of unbounded genetic languages, directed graphsjoint-type determines the constraints on the relative motion
are presented here as an appropriate basis for a grammar that cdretween this part and its parent by defining the number of degrees
be used to describe both the morphology and nervous systems off freedom of the joint and the movement allowed for each degree
virtual creatures. New features and functions can be added to creasf freedom. The dférent joint-types allowed areigid, revolute,
tures, or existing ones removed, so the levels of complexity cantwist, universal, bend-twist, twist-benar spherical Joint-limits
also evolve. determine the point beyond which restoring spring forces will be
The next two sections explain how virtual creatures can be rep-exerted for each degree of freedomrekursive-limitparameter
resented by directed graphs. The system used for physical simuladetermines how many times this node should generate a phenotype
tion is summarized in section 4, and section 5 describes howpart when in a recursive cycle. A set of loceuons is also
specific behaviors can be selected. Section 6 explains how evoluincluded in each node, and will be explained further in the next
tions are performed with directed graph genotypes, and finally asection. Finally a node contains a set obnnectionsto other

range of resulting creatures is shown. nodes.
Each connection also contains information. The placement of a
2 Creature Morphology child part relative to its parent is decomposed psition, orien-

tation, scale andreflection so each can be mutated independently
The position of attachment is constrained to be on the surface of

. . . . he parent part. Reflections cause negative scaling, and allow simi-
representation of this morphology is a directed graph of nodes an . X .
. ' . .~ “lar but symmetrical sub-trees to be describeterfinal-onlyflag
connections. Each graph contains the developmental instructions . . N
) . L .~ “tan cause a connection to be applied only when the recursive limit
for growing a creature, and provides a way of reusing instructions. . . .
> . s is reached, and permits tail or hand-like components to occur at the
to make similar or recursive components within the creature. A ! ! .
henotype hierarchy of parts is made from a graph by starting at aend of chains or repeating units.
P yp yorp graph by 9 Figure 1 shows some simple hand-designed graph topologies

and resulting phenotype morphologies. Note that the parameters in
the nodes and connections suchreaursive-limitare not shown

for the genotype even though theyeat the morphology of the
phenotype. The nodes are anthropomorphically labeled as,"body
“leg,” etc. but the genetic descriptions actually have no concept of
specific categories of functional components.

In this work, the phenotype embodiment of a virtual creature is a
hierarchy of articulated three-dimensional rigid parts. The genetic

Genotype: directed graph. Phenotype: hierarchy of 3D part

3 Creature Control

A virtual “brain” determines the behavior of a creature. The brain
is a dynamical system that accepts input sensor values and pro-
vides output déctor values. The output values are applied as
forces or torques at the degrees of freedom of the qdiyits.

This cycle of efiects is shown in Figure 2.

Sensor effector, and internal neuron signals are represented
here by continuously variable scalars that may be positive or nega-
tive. Allowing negative values permits the implementation of sin-
gle efectors that can both push and pull. Although this may not be
biologically realistic, it simplifies the more natural development of
muscle pairs.

Control system Physical simulation

\—/ limb 'I
] o f (
[p3eamen

Figure 1. Designed examples of genotype graphs and corres
ing creature morphologies. Figure 2: The cycle of d&cts between brain, body and worlc

Sensors 3D World

3.1 Sensors dynamic simulation and the resulting behavior of the creature. Dif-
ferent types of ééctors, such as sound or scent emitters, might
also be interesting, but onlyfeftors that exert simulated muscle
forces are used here.

Each efector controls a degree of freedom of a joint. Tliecef
tors for a given joint connecting two parts, are contained in the part
further out in the hierarchyso that each non-root part operates
only a single joint connecting it to its parent. The angle sensors for
that joint are also contained in this part.

Each sensor is contained within a specific part of the,baaly
measures either aspects of that part or aspects of the world relativ:
to that part. Three dérent types of sensors were used for these
experiments:

1. Joint angle sensorgive the current value for each degree of
freedom of each joint.

2. Contact sensoractivate (1.0) if a contact is made, and nega-

tively activate (-1.0) if not. Each contact sensor has a sensitive Each efector is given anaximum-sengthproportional to the

region within a pars shape and activates when any contac_ts oceur . imum cross sectional area of the two parts it joinfeckr
in that area. In this work, contact sensors are made available for,

e orces are scaled by these strengths and not permitted to exceed
each face of each part. No distinction is made between self-contac . : .

. hem. Since strength scales with area, but mass scales with vol-
and environmental contact.

3. Photosensorseact to a global light source position. Three ume, as in nature, behavior does not always scale uniformly
photosensor signals provide the coordinates of the normalized .
light source direction relative to the orientation of the part. This is 3.4 Combining Morphology and Control
the same as having pairs of opposing photosensitive surfaces iffhe genotype descriptions of virtual brains and the actual pheno-
which the left side negates its response and adds it to the right sidéype brains are both directed graphs of nodes and connections. The
for the total response. nodes contain the sensors, neurons, afedtefs, and the connec-

Other types of sensors, such as accelerometers, additional progtions define the flow of signals between these nodes. These graphs
rioceptors, or even sound or smell detectors could also be implean also be recurrent, and as a result the final control system can
mented, but these basic three are enough to allow interesting antiave feedback loops and cycles.
adaptive behaviors to occurhe inclusion of the diérent types of However most of these neural elements exist within a specific
sensors in an evolving virtual brain can be enabled or disabled agpart of the creature. Thus the genotype for the nervous system is a
appropriate depending on the physical environment and behaviomested graph: the morphological nodes each contain graphs of the
goals. For example, contact sensors are enabled for land environreural nodes and connections. Figure 3 shows an example of an

ments, and photosensors are enabled for following behaviors. evolved nested graph.
When a creature is synthesized from its genetic description, the
3.2 Neurons neural components described within each part are generated along

with the morphological structure. This causes blocks of neural
control circuitry to be replicated along with each instanced part, so
each duplicated segment or appendage of a creature can have a
similar but independent local control system.

These local control systems can be connected to enable the pos-
fsibility of coordinated control. Connections are allowed between
adjacent parts in the hierarchy: the neurons afedttefs within a
part can receive signals from sensors or neurons in their parent part
or in their child parts.

Creatures are also given a set of neurons that are not associated

Internal neural nodes are used to give virtual creatures the possibil
ity of arbitrary behaviorldeally a creature should be able to have
an internal state beyond its sensor values, orfeetaél by its his-
tory.

In this work, diferent neural nodes can perform diverse func-
tions on their inputs to generate their output signals. Because o
this, a creature’ brain might resemble a dataflow computer pro-
gram more than a typical neural network. This approach is proba-
bly less biologically realistic than just using sum and threshold
functions, but it is hoped that it makes the evolution of interesting
behaviors more likelyThe set of functions that neural nodes can
have is:sum, poduct, divide, sum-tleshold, geaterthan, sign-of,
min, max, abs, if, interpolate, sin, cos, atan, log, expt, sigmoid,
integrate, diffeentiate, smooth, memomgscillate-wave, and oscil-
late-saw

Some functions compute an output directly from their inputs,
while others such as the oscillators retain some state and can give
time varying outputs even when their inputs are constant. The
number of inputs to a neuron depends on its function, and here is at
most three. Each input contains a connection to another neuron or
a sensor from which to receive a value. Alternativalyinput can wav

simply receive a constant value. The input values are first scaled L JO >
by weights before being operated on.

~
\
\
]
¢
/

For each simulated time interval, every neuron computes its 1 +
output value from its inputs. In this work, two brain time steps are
performed for each dynamic simulation time step so signals can

propagate through multiple neurons with less delay

Figure 3: Example evolved nested graph genotype. The
3.3 Effectors graph in bold describes a creatsraiorphology The inner grap
Each efector simply contains a connection to a neuron or a sensordescribes its neural circuitryO and J1 are joint angle sensors,
from which to receive a value. This input value is scaled by a con-EO and E1 are &fctor outputs. The dashed node contains ce
stant weight, and then exerted as a joint force whitdcisf the ized neurons that are not associated with any part.

with a specific part, and are copied only once into the phenotype ture’s body to make a complete distributed nervous system. Figure
This gives the opportunity for the development of global synchro- 4a shows the creature morphology resulting from the genotype in
nization or centralized control. These neurons can receive signaldigure 3. Again, parameters describing shapes, recursive-limits,
from each other or from sensors or neurons in specific instances oand weights are not shown for the genotype even though they
any of the creaturg’parts, and the neurons anfietors within the affect the phenotype. Figure 4b shows the corresponding brain of
parts can optionally receive signals from these unassociated-neuthis creature. The brackets on the left side of figure 4b group the
ron outputs. neural components of each part. Some groups have similar neural
In this way the genetic language for morphology and control is systems because they are copies from the same genetic description.
memged. A local control system is described for each type of part, This creature can swim by making cyclic paddling motions with
and these are copied and connected into the hierarchy of the credour similar flippers. Note that it can befdifilt to analyze exactly
how a control system such as this works, and some components
may not actually be used at all. Fortunatalyprimary benefit of
using artificial evolution is that understanding these representa-
tions is not necessary

4 Physical Simulation

Dynamics simulation is used to calculate the movement of crea-
tures resulting from their interaction with a virtual three-dimen-
sional world. There are several components of the physical
simulation used in this work: articulated body dynamics, numeri-
cal integration, collision detection, collision response, friction, and
an optional viscous fluid ffct. These are only briefly summarized
here, since physical simulation is not the emphasis of this.paper

Featherstone’recursive O(N) articulated body method is used
to calculate the accelerations from the velocities and external
Sensors Neurons Effectors forces of each hierarchy of connected rigid parts [3]. Integration

determines the resulting motions from these accelerations and is
performed by a Runge-Kutta-Fehlgemethod which is a fourth
— order Runge-Kutta with an additional evaluation to estimate the
error and adapt the step sizgpitally between 1 and 5 integration
time steps are performed for each frame of 1/30 second.

The shapes of parts are represented here by simple rectangular
solids. Bounding box hierarchies are used to reduce the number of
collision tests between parts fromn®)(Pairs whose world-space
bounding boxes intersect are tested for penetrations, and collisions
with a ground plane are also tested if one exists. If necessary
previous time-step is reduced to keep any new penetrations below
a certain tolerance. Connected parts are permitted to interpenetrate
but not rotate completely through each otfidnis is achieved by
using adjusted shapes when testing for collisions between con-
nected parts. The shape of the smaller part is clipped halfway back
from its point of attachment so it can swing freely until its remote
end makes contact.

Collision response is accomplished by a hybrid model using
both impulses and penalty spring forces. At high velocities, instan-
taneous impulse forces are used, and at low velocities springs are
used, to simulate collisions and contacts with arbitrary elasticity
and friction parameters.

A viscosity efect is used for the simulations in underwater
environments. For each exposed moving surface, a viscous force
resists the normal component of its velggitsoportional to its sur-
face area and normal velocity magnitude. This is a simple approxi-
mation that does not include the motion of the fluid itself, but is
still sufficient for simulating realistic looking swimming and pad-
dling dynamics.

It is important that the physical simulation be reasonably accu-
rate when optimizing for creatures that can move within it. Any
bugs that allow engy leaks from non-conservation, or even

Figure 4a: The phenotype morphology generated from
evolved genotype shown in figure 3.

Figure 4b: The phenotype “brain” generated from the evol round-of errors, will inevitably be discovered and exploited by the
genotype shown in figure 3. Thefeaftor outputs of this contr evolving creatures. Although this can be a lazy and often amusing
system cause paddling motions in the four flippers of the approach for debugging a physical modeling system, it is not nec-

phology above. essarily the most practical.

5 Behavior Selection 5.4 Following

In this work, virtual creatures are evolved by optimizing for a spe- Another evaluation method is used to select for creatures that can
cific task or behavior creature is grown from its genetic descrip- adaptively follow a light source. Photosensors are enabled, so the
tion as previously explained, and then it is placed in a dynamically effector output forces and resulting behavior can depend on the rel-
simulated virtual world. The brain providedestor forces which ative direction of a light source to the creature. Several trials are
move parts of the creature, the sensors report aspects of the worlein with the light source in dérent locations, and the speeds at
and the creaturs’body back to the brain, and the resulting physi- Which a creature moves toward it are averaged for the fitness
cal behavior of the creature is evaluated. After a certain duration ofvalue. Following behaviors can be evolved for both water and land
virtual time (perhaps 10 seconds)fitaessvalue is assigned that ~ €nvironments.

corresponds to the success level of that behafiarcreature has a Fleeing creatures can also be generated in a similar mamner
high fitness relative to the rest of the population, it will be selected following behavior can be transformed into fleeing behavior by
for survival and reproduction as described in the next section. simply negating a creatussphoto sensor signals.

Before creatures are simulated for fitness evaluation, some sim- Once creatures are found that exhibit successful following
ple viability checks are performed, and inappropriate creatures aréd€haviors, they can be led around in arbitrary paths by movement
removed from the population by giving them zero fitness values. of the light sources.

Those that have more than a specified number of parts are .
removed. A subset of genotypes will generate creatures whoséd Creature Evolution

parts initially interpenetrate. A short simulation with collision An evolution of virtual creatures is begun by first creating an ini-
detection and response attempts to repel any intersecting parts, bufg| population of genotypes. These initial genotypes can come
those creatures with persistent interpenetrations are also discardegrom several possible sources: new genotypes can be synthesized
Computation can be conserved for most fitness methods by dis«from scratch” by random generation of sets of nodes and connec-
continuing the simulations of individuals that are predicted to be tjons, an existing genotype from a previous evolution can be used
unlikely to survive the next generation. The fitness is periodically to seed the initial population of a new evolution, or a seed geno-
estimated for each simulation as it proceeds. Those are stoppegpe can be designed by hand. However hand-designed seed
that are either not moving at all or are doing somewhat worse thangenotypes were used in the examples shown here.
the minimum fitness of the previously surviving individuals. A survival-ratio determines the percentage of the population
Many different types of fitness measures can be used to performehat will survive each generation. In this work, population sizes
evolutions of virtual creatures. Four examples of fithess methodsyyere typically 300, and the survival ratio was 1/5. If the initially

are described here. generated population has fewer individuals with positive fitness
]] than the number that should survive, another round of seed geno-
5.1 Swimming types is generated to replace those with zero fitness.

Physical simulation of a water environment is achieved by turning = FOr €ach generation, creatures are grown from their genetic

off gravity and adding the viscous water resistandecefas descriptions, and their fitness values are measured by a method
described. Swimming speed is used as the fitness value and is meSUCh as those described in the previous section. The individuals
sured by the distance traveled by the creatuzenter of mass per whose fitnesses fall within the survival percentile are then repro-

unit time. Straight swimming is rewarded over circling by using duced, and their tdpring fill the slots of those individuals that did

the maximum distance from the initial center of mass. Continuing N°t Survive. The survivors are kept in the population for the next
movement is rewarded over that from a single initial push, by giv- generation, and the total size of the population is maintained. The

ing the velocities during the final phase of the test period a strongef?UMPer of dspring that each surviving individual generates is
relative weight in the total fitness value. proportional to its fitness — the most successful creatures make the

most children.

5.2 Walking Offspring are generated from the surviving creatures by copy-
’ ing and combining their directed graph genotypes. When these

The termwalkingis used loosely here to indicate any form of land graphs are reproduced they are subjected to probabilistic variation

locomotion. A land environment is simulated by including gravity or mutation, so the corresponding phenotypes are similar to their

turning of the viscous water #dct, and adding a static ground parents but have been altered or adjusted in random ways.

plane with friction. Additional inanimate objects can be placed in

the world for more complex environments. Again, speed is used asg,1 M utating Directed Graphs

the selection criteria, but the vertical component of velocity is

ignored.

For land environments, it can be necessary to prevent creature%I
from generating high velocities by simply falling ovéihis is
accomplished by first running the simulation with no friction and
no efector forces until the height of the center of mass reaches
stable minimum.

A directed graph is mutated by the following sequence of steps:
1. The internal parameters of each node are subjected to possi-
e alterations. A mutation frequency for each parameter type
determines the probability that a mutation will be applied to it at
all. Boolean values are mutated by simply flipping their state. Sca-
a]ar values are mutated by adding several random numbers to them
for a Gaussian-like distribution so small adjustments are more
. likely than drastic ones. The scale of an adjustment is relative to
5.3 Jumping the original value, so lge quantities can be varied more easily and
Jumping behavior can be selected for by measuring the maximumsmall ones can be carefully tuned. A scalar can also be negated.
height above the ground of the lowest part of the creature. AnAfter a mutation occurs, values are clamped to their legal bounds.
alternative method is to use the average height of the lowest part o6ome parameters that only have a limited number of legal values
the creature during the duration of simulation. are mutated by simply picking a new value at random from the set

of possibilities. a. Crossovers: b. Grafting:
2. A new random node is added to the graph. A new node nor-

mally has no déct on the phenotype unless a connection also i1 5252§ 2 .7 S
mutates a pointer to it. Therefore a new node is always initially Pa€" dgéﬁb é%t

added, but then garbage collected later (in step 5) if it does not X parent 1 parent 2
become connected. This type of mutation allows the complexity of parent 2
the graph to grow as an evolution proceeds.

3. The parameters of each connection are subjected to possible ' C{-d?)’gb
mutations, in the same way the node parameters were in step 1. child child

With some frequency the connection pointer is moved to point to a
different node which is chosen at random.

4. New random connections are added and existing ones are
removed. In the case of the neural graphs these operations are not
performed because the number of inputs for each element is fixedfrom matings are sometimes subjected to mutations afterwards, but
but the morphological graphs can have a variable number of con-with reduced mutation frequencies. In this work a reproduction
nections per node. Each existing node is subject to having a newmethod is chosen at random for each child to be produced by the
random connection added to it, and each existing connection issurviving individuals using the ratios: 40% asexual, 30% cross-
subject to possible removal. overs, and 30% grafting. A second parent is chosen from the survi-

5. Unconnected elements are garbage collected. Connectednessors if necessaryand a new genotype is produced from the parent
is propagated outwards through the connections of the graph, starter parents.
ing from the root node of the morphology from the dkctor After a new generation of genotypes is created, a phenotype
nodes of neural graphs. Although leaving the disconnected nodesreature is generated from each, and again their fitness levels are
for possible reconnection might be advantageous, and is probablyevaluated. As this cycle of variation and selection continues, the
biologically analogous, at least the unconnected newly added onegopulation is directed towards creatures with higher and higher fit-
are removed to prevent unnecessary growth in graph size. ness.

Since mutations are performed on a per element basis, geno-
types with only a few elements might not receive any mutations, 6.3 Parallel |mplementation
where genotypes with many elements would receive enough muta-

tions that they rarely resemble their parents. This is compensatecirhls genet_lc alslont#m hi/ls b‘?e” |mplem¢/enlted torun in paralle_l on
for by temporarily scaling the mutation frequencies by an amount & Connection MachieCM-5 in a master/slave message passing

inversely proportional to the size of the current graph being model. A single processing node performs the genetic algorithm. It

mutated, such that on the average, at least one mutation occurs ifgfMS OUt genotypes to the other nodes to be fitness tested, and
the entire graph. gathers back the fitness values after they have been determined.

Mutation of nested directed graphs, as are used here to repreThe fithess tests each include a dynamics simulation and although

sent creatures, is performed by first mutating the outer graph andnOSt can execute in nearly real-time, they are still the dominant
then mutating the inner layer of graphs. The inner graphs areComputational rgquwement of the system. Performing a.fltnes.s test
mutated last because legal values for some of their parameter8€r Processor is a simple buffeefive way to parallelize this

(inter-node neural input sources) can depend on the topology of thedenetic algorithm, and the overall performance scales quite lin-

Figure 5: Two methods for mating directed graphs.

outer graph. early with the number of processors, as long as the population size
is somewhat lgrer than the number of processors.
6.2 Mating Directed Graphs Each fitness test takes afdient amount of time to compute

) depending on the complexity of the creature and how it attempts to
Sexual reprodugtlon gllows compgnents from more than one par-move. o prevent idle processors from just waiting for others to
ent to be combined into newfspring. This permits features 10 finish new generations are started before the fitness tests have
evolve independently and later be ge into a single individual. peen completed for all individuals. Those slower simulations are
Two different methods for mating directed graphs are presented. gimply skipped during that reproductive cycle, so all processors
The first is acrossoveroperation (see figure 5a). The nodes of ,5in active. Wh this approach, an evolution with population

two parents are each aligned in a row as they are stored, and thg;;¢ 309, run for 100 generations, might take around three hours to
nodes of the first parent are copied to make the child, but one or, omplete on a 32 processor CM-5.

more crossover points determine when the copying source shoul

switch to the other parent. The connections of a node are copied7 Results

with it and simply point to the same relative node locations as

before. If the copied connections now point out of bounds becauseEvolutions were performed for each of the behavior selection

of varying node numbers they are randomly reassigned. methods described in section 5. A population of interbreeding
A second mating methagraftstwo genotypes together by con- ~ creatures often convges toward homogenejtiyut each separately

necting a node of one parent to a node of another (see figure 5byun evolution can produce completelyfdient locomotion strate-

The first parent is copied, and one of its connections is chosen agies that satisfy the requested behakar this reason, many sep-

random and adjusted to point to a random node in the second pararate evolutions were performed, each for 50 to 100 generations,

ent. Newly unconnected nodes of the first parent are removed anéind the most successful creatures of each evolution were

the newly connected node of the second parent and any of itdnspected. A selection of these is shown in figures 6-9. In a few

descendants are appended to the new graph. cases, genotypes resulting from one evolution were used as seed
A new directed graph can be produced by either of these twogenotypes for a second evolution.

mating methods, or asexually by using only mutation&spihg The swimming fithess measure produced geanumber of

simple paddling and tail wagging creatures. A variety of more
complex strategies also emged from some evolutions. A few
creatures pulled themselves through the water with specialized

sculling appendages. Some used two symmetrical flippers or even

large numbers of similar flippers to propel themselves, and several

multi-segmented watersnake creatures evolved that wind through

the water with sinusoidal motions.

The walking fitness measure also produced a surprising number

of simple creatures that could sfiefor hobble along at fairly high
speeds. Some walk with lizard-like gaits using the corners of their

parts. Some simply wag an appendage in the air to rock back and

forth in just the right manner to move forward. A number of more
complex creatures engad that push or pull themselves along,

inchworm style. Others use one or more leg-like appendages to

The jumping fitness measure did not seem to produce as many @ %

successfully crawl or walk. Some hopping creatures evergecher
that raise and lower arm-like structures to bound along at fairly
high speeds.

different strategies as the swimming and walking optimizations,
but a number of simple jumping creatures did eyaer
The light-following fitness measure was used in both water and

Figure 7: Creatures evolved for walking.

land environments, and produced a wide variety of creatures that

can swim or walk towards a light source. Some consistently and
successfully follow the light source atféifent locations. Others

can follow it some of the time, but then at certain relative locations
fail to turn towards it. In the water environment, some developed
steering fins that turn them towards the light using photosensor

they oscillate along.

automatically Aesthetic selection is a possible way to achieve this,

Figure 6: Creatures evolved for swimming.

inputs. Others adjust the angle of their paddles appropriately as 2%; i
Sometimes a user may want to exert more control on the results \ ﬂ
of this process instead of simply letting creatures evolve entirely

Figure 8: Creatures evolved for jumping.

but observation of the trial simulations of every creature and pro-
viding every fitness value interactively would require too much
patience on the part of the us@rconvenient way of mixing auto-
matic selection with aesthetic selection, is to observe the final suc-
cessful results of a number of evolutions, and then start new
evolutions with those that are aesthetically preferred. Although the
control may be limited, this gives the user some influence on the
creatures that are developed.

Another method of evolving creatures is to interactively evolve
a morphology based on looks ondy alternatively hand design the
morphology and then automatically evolve a brain for that mor-
phology that results in a desirable behavior

Creatures that evolved in one physical world can be placed in
another and evolved furthekn evolved watersnake, for example,
was placed on land and then evolved to crawl instead of swim.

Figure 9: Following behaviarFor each creature, four separate
als are shown from the same starting point towarfereifit ligh
source goal locations.

8 Future Work

measure the level of success at performing mofiewiftasks, or
even multiple tasks. Fitness could also include tlieiefcy at

which a behavior was achieved. For example, a fithess measur@.

might be the distance traveled divided by the amount ofggner
consumed to move that distance.

Alternatively, fitness could be defined in a more biologically
realistic way by allowing populations of virtual creatures to com-
pete against each other within a physically simulated changing

world. Competition has been shown to facilitate complexsipe-
cialization, or even social interactions [17,22]. It becomdicdif

to define explicit evaluations that can select for “interesting” 6.
behavior but perhaps systems like these could help produce such

results.

Another direction of future work might be to adjust the genetic
language of possible creatures to describe only those that could.
actually be built as real robots. The virtual robots that can best per-
form a given task in simulation would then be assembled, and

would hopefully also perform well in reality

Much work could be done to dress up these virtual creatures to
give them diferent shapes and improved rendered looks. Flexible 10.

skin could surround or be controlled by the rigid componerts. V
ious materials could be added such as scales fimaieyes, or ten-

tacles, and they might flow or bounce using simple local dynamic 11.
simulations, even if they did not influence the overall dynamics.
The shape details and external materials could also be included in
the creatures’ genetic descriptions and be determined by artificiall2.

evolution.

9 Conclusion

In summarya system has been described that can generate autono-
mous three-dimensional virtual creatures without requiring cum-

bersome user specifications, desigfiort$, or knowledge of

algorithmic details. A genetic language for representing virtual
creatures with directed graphs of nodes and connections allows an
unlimited hyperspace of possible creatures to be explored. It is
believed that these methods have potential as a powerful tool for,
the creation of desirable complexity for use in virtual worlds and

computer animation.

As computers become more powerful, the creation of virtual

actors, whether animal, human, or completely unearthy be

limited mainly by our ability to design them, rather than our ability
to satisfy their computational requirements. A control system that
someday actually generates “intelligent” behavior might tend to be
a complex mess beyond our understanding. Artificial evolution
permits the generation of complicated virtual systems without
requiring design, and the use of unbounded genetic languages
allows evolving systems to increase in complexity beyond our
understanding. Perhaps methods such as those presented here Wélb
provide a practical pathway toward the creation of intelligent

behavior

Acknowledgments

Thanks to Gary Oberbrunner and Matt Fitzgibbon for Connection

Machine and software help. Thanks to LeucRer and Thinking

Machines Corporation for supporting this research. Thanks to
Bruce Blumbey and Peter Schréder for dynamic simulation help

and suggestions. And special thanks to Pattie Maes.

References

One direction of future work would be to experiment with addi- 1.
tional types of fitness evaluation methods. More complex behav-
iors might be evolved by defining fitness functions that could

Cramer N.L., “A Representation for the Adaptive Generation
of Simple Sequential ProgramsProceedings of the First
International Confeence on Genetic Algorithmsd. by J.
Grefenstette, 1985, pp.183-187.

Dawkins, R..The Blind VitchmakerHarlow Longman, 1986.
Featherstone, RRobot Dynamics Algorithm&luwer Aca-
demic Publishers, Norwell, MA, 1987.

. de Garis, H., “Genetic Programming: Building Artificial Ner-

vous Systems Using Genetically Programmed Neural Network
Modules,”Proceedings of the 7th International Corgfiece on
Machine Learning1990, pp.132-139.

. Goldbeg, D.E.,Genetic Algorithms in Seeln, Optimization,

and Machine LearningAddison-Wésley 1989.

Hart, J., “The Object Instancing Paradigm for Linear Fractal
Modeling,” Graphics Interface1992, pp.224-231.

Holland, J.H.,Adaptation in Natural and Artificial Systems

Ann Arbor, University of Michigan Press, 1975.

Kitano, H., “Designing neural networks using genetic algo-
rithms with graph generation systemComplex Systems
Vol.4, pp.461-476, 1990.

Koza, J.Genetic Pogramming: on the ”xgramming of Com-
puters by Means of Natural SelectidflT Press, 1992.
LindenmayerA., “Mathematical Models for Cellular Interac-
tions in Development, Parts | and I0burnal of Theaestical
Biology, Vol.18, 1968, pp.280-315.

McKenna, M., and ZeltzerD., “Dynamic Simulation of
Autonomous Legged Locomotion,'Computer Graphics
Vol.24, No.4, July 1990, pp.29-38.

Miller, G., “The Motion Dynamics of Snakes andihis,”
Computer Graphicsvol.22, No.4, July 1988, pp.169-178.

. Mjolsness, E., Sharp, D., and Alpert, B., “Scaling, Machine

Learning, and Genetic Neural NetsXdvances in Applied
MathematicsVol.10, pp.137-163, 1989.

14. Ngo, J.T, and Marks, J., “Spacetime Constraints Revisited,”

Computer GraphicsAnnual Conference Series, 1993, pp.343-
350.

15.van de Panne, M., and Fiume, E., “SenSctuator Net-

works,” Computer GraphicsAnnual Conference Series, 1993,
pp.335-342.

16. Raibert, M., and Hodgins, J.K., “Animation of Dynamic

Legged Locomotion,Computer Graphigs\Vol.25, No.4, July
1991, pp.349-358.

17. Ray, T., “An Approach to the Synthesis of LifeAttificial Life

Il, ed. by Langton, dylor, Farmey & Rasmussen, Addison-
Wesley 1991, pp.371-408.

. Sims, K., “Artificial Evolution for Computer Graphics,” Com-

puter GraphicsVol.25, No.4, July 1991, pp.319-328.

.Sims, K., “Interactive Evolution of Dynamical Systems,”

Toward a Practice of Autonomous Systemsdeedings of the
First European Confance on Atrtificial Life ed. by \arela,
Francisco, & Bougine, MIT Press, 1992, pp.171-178.

. Smith, A.R., “Plants, Fractals, and Formal Languag€srh-

puter GraphicsVol.18, No.3, July 1984, pp.1-10.

.Todd, S., and Latham, WEvolutionary Art and Computers

London, Academic Press, 1992.

. Yaeger L., “Computational Genetics, Physiologiletabo-

lism, Neural Systems, Learningision, and Behavior or Poly-
World: Life in a New Context,’Artificial Life I, ed. by C.
Langton, Santa Fe Institute Studies in the Sciences of Com-
plexity, Proceedings &f. XVII, Addison-Wesley 1994,
pp.263-298.

	genarts.com
	http://web.genarts.com/karl/papers/siggraph94.pdf

