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Abstract

This paper describes a system for the evolution and
co-evolution of virtual creatures that compete in

physically simulated three-dimensional worlds. Pairs

of individuals enter one-on-one contests in which

they contend to gain control of a common resource.
The winners receive higher relative fithess scores
allowing them to survive and reproduce. Realistic

dynamics simulation including gravijtycollisions,

and friction, restricts the actions to physically plausi-

ble behaviors.

The morphology of these creatures and the neural
systems for controlling their muscle forces are both
genetically determined, and the morphology and
behavior can adapt to each other as they evolve
simultaneously The genotypes are structured as
directed graphs of nodes and connections, and they
can eficiently but flexibly describe instructions for
the development of creatures’ bodies and control sys-
tems with repeating or recursive components. When
simulated evolutions are performed with populations
of competing creatures, interesting and diverse strate-
gies and countestrategies emge.

The work presented here takes the former approach. The
fithess of an individual is highly dependent on the specific
behaviors of other individuals currently in the population.
The hope is that virtual creatures with higher complexity and
more interesting behavior will evolve than when applying
the selection pressures of optimization alone.

Many simulations of co-evolving populations have been
performed which involve competing individuals [1,2]. As
examples, Lindgren has studied the evolutionary dynamics
of competing game strategy rules [14], Hillis has demon-
strated that co-evolving parasites can enhance evolutionary
optimization [9], and Reynolds evolves vehicles for compe-
tition in the game of tag [19]. The work presented here
involves similar evolutionary dynamics to help achieve
interesting results when phenotypes have three-dimensional
bodies and compete in physically simulated worlds.

In several cases, optimization has been used to automat-
ically generate dynamic control systems for given two-
dimensional articulated structures: de Garis has evolved
weight values for neural networks [6], Ngo and Marks have
applied genetic algorithms to generate stimulus-response
pairs [16], and van de Panne and Fiume have optimized sen-
soractuator networks [17]. Each of these methods has
resulted in successful locomotion of two-dimensional stick

figures.

The work presented here is related to these projects, but
Interactions between evolving ganisms are generally differs in several respects. Previoysigntrol systems were
believed to have a strong influence on their resulting comgenerated for fixed structures that were aesigned, but
plexity and diversity In natural evolutionary systems the here entire creatures are evolved: the evolution determines
measure of fitness is not constant: the reproducibility of athe creature morphologies as well as their control systems.
organism depends on many environmental factors includin§he physical structure of a creature can adapt to its control
other evolving aganisms, and is continuously in flux. Com- system, and vice versa, as they evolve togethisp, here
petition between ganisms is thought to play a significant the creatures’ bodies are three-dimensional and fully physi-
role in preventing static fitness landscapes and sustainirgglly based. In addition, a developmental process is used to
evolutionary change. generate the creatures and their control systems, and allows

These dects are a distinguishing @kfence between similar components including their local neural circuitry to
natural evolution and optimization. Evolution proceeds withbe defined once and then replicated, instead of requiring
no explicit goal, but optimization, including the genetic algo-each to be separately specified. This approach is related to L-
rithm, usually aims to search for individuals with the highessystems, graftal grammars, and object instancing techniques
possible fithess values where the fithess measure has bg8i1,13,15,23]. Finallythe previous work on articulated
predefined, remains constant, and depends only on the inditructures relies only on optimization, and competitions
vidual being tested. between individuals were not considered.

1 Introduction
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‘ Figure 1: The arena. 4
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A different version of the system described here has algare is consistent from contest to contest no matter which
been used to generate virtual creatures by optimizing for spetarting side it is assigned. Each creature starts on the ground
cific defined behaviors such as swimming, walking, and foland behind a diagonal plane slanting up and away from the
lowing [22]. cube. Creatures are wedged into these “starting zones” until

Genotypes used in simulated evolutions and genetithey contact both the ground plane and the diagonal plane, so
algorithms have traditionally consisted of strings of binarytaller creatures must start further back. This helps prevent
digits [7,10]. \ariable length genotypes such as hierarchicahe inelegant strategy of simply falling over onto the cube.
Lisp expressions or other computer programs can be usefgtrategies like this that utilize only potential eyyeare fur-
in expanding the set of possible results beyond a predefingifer discouraged by relaxing a creatsrbbdy before it is
genetic space of fixed dimensions. Genetic languages sughced in the starting zone. Thédeet of gravity is simulated
as these allow new parameters and new dimensions to Qftil the creature reaches a stable minimum state.
added to the genetic space as an evolution proceeds, and At the start of the contest the creatures’ nervous sys-
therefore define rathertgyperspacef possible results. This tems are activated, and a physical simulation of the crea-
approach has been used to genetically program solutions tq@es’ bodies, the cube, and the ground plane begins. The
variety of problems [3,12], as well as to explore procedurallyinner is the creature that has the most control over the cube
generated images and dynamical systems [20,21]. after a certain duration of simulated time (8 seconds were

In the spirit of unbounded genetic languagiisected  given). Instead of just defining a winner and losiee mar-
graphsare presented here as an appropriate basis for a grai of victory is determined in the form of a relative fitness
mar that can be used to describe both the morphology afd,e so there is selection pressure not just to win, but to
neural systems of virtual creatures. The level of complexity, by the lagest possible mgin.
is variable for both genotype and phenotype. New features  the creatures’ final distances to the cube are used to cal-

and functions can be added to creatures or existing ON@§jate their fitness scores. The shortest distance from any
removed, as they .evolve. ) , ) oint on the surface of a creatuseparts to the center of the
The next section of this paper describes the enwronmeE be is used as its distance value. A creature gets a higher
of the simulated contest and how the competitors are score§]:c)re by being closer to the cube, but also gets a higher score
Section 3 discusses féifent simplified competition patterns when its opponent is further awé;iﬂs encourages creatures
for approximating competitive environments. Sections 4 an?

5 present the genetic language that is used to represent creoa[each the cube, but also gives points for keeping the oppo-

tures with arbitrary structure and behayiend section 6 nent away from it. Ifl; andd, are the final shortest distances

summarizes the physical simulation techniques used. SectiGh 8ach creature to the cube, then the fitnesses for each crea-

7 discusses the evolutionary simulations including the metture.f1 andf,, are given by:
ods used for mutating and mating directed graph genotypes,

. . - . . d,—d
and finally sections 8 and 9 provide results, discussion, and f, =10+ d2+ dl
suggestions for future work. 12
dl_dZ

2 The Contest fp = 10+
179,

Figure 1 shows the arena in which two virtual creatures will

compete to gain control of a single cube. The cube is placethis formulation puts all fitness values in the limited range
in the center of the world, and the creatures start on opposité 0.0 to 2.0. If the two distances are equal the contestants
sides of the cube. The second contestant is initially turned lgceive tie scores of 1.0 each, and in all cases the scores will
180 degrees so the relative position of the cube to the creaverage 1.0.
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Credit is also given for having “control” over the cube, performed between individuals within the same species.
beyond just as measured by the minimum distance to it. If A third compromise is for each individual to compete
both creatures end up contacting the cube, the winner is tlo@ce per generation, but all against the same opponent. The
one that surrounds it the most. This is approximated by fuindividual with the highest fithess from the previous genera-
ther decreasing the distance value, as used above, whetian is chosen as this one-to-beat (figure 2d). This also
creature is touching the cube on the side that opposes its ceaguires N - 1 competitions per generation, bégati/ely
ter of mass. Since the initial distances are measured from th@ves fair relative fitness values since all are playing against
center of the cube they can be adjusted in this way and stihle same opponent which has proven to be competarit. V
remain positive. ous interesting instabilities can still occur over generations

During the simulated contest, if neither creature shows
any movement for a full second, the simulation is stopped
and the scores are evaluated early to save unnecessary com-
putation.

3 Approximating Competitive Environments

There are many tradefefto consider when simulating an
evolution in which fitness is determined by discrete competi-
tions between individuals. In this work, pairs of individuals a. Allvs. all, e. Allvs. all,
compete one-on-one. At every generation of a simulated within species. between species.
evolution the individuals in the population are paired up by

some pattern and a number of competitions are performed to

eventually determine a fithess value for every individual. O/O
The simulations of the competitions are by far the dominant O/O
computational requirement of the process, so the total num-

ber of competitions performed for each generation and the CX) Cf)
effectiveness of the pattern of competitions are important

considerations.
In one extreme, each individual competes with all the b. Random, f. Random,
others in the population and the average score determines the within species. between species.

fitness (figure 2a). Howevethis requires N? - N)/2 total
competitions for a single-species population of N individu-
als. For lage populations this is often unacceptable, espe-
cially if the competition time is significant, as it is in this
work.

In the other extreme, each individual competes with just
a single opponent (figure 2b). This requires only N/2 total
competitions, but can cause inconsistency in the fitness val-
ues since each fitness is often highly dependent on the spe-
cific individual that happens to be assigned as the opponent.
If the pairing is done at random, and especially if the muta-
tion rate is high, fithess can be more dependent on the luck of
receiving a poor opponent than on an individualttual
ability.

One compromise between these extremes is for each
individual to compete against several opponents chosen at
random for each generation. This can somewhat dilute the
fithess inconsistency problem, but at the expense of more
competition simulations.

A second compromise is a tournament pattern (figure
2c) which can diciently determine a single overall winner
with N - 1 competitions. But this also does not necessarilyFigure 2: Different pairwise competition patterns for o
give all individuals fair scores because of the random initialand two species. The gray areas represent species o
opponent assignments. Also, this pattern does not easilbreeding individuals, and lines indicate competitions
apply to multi-species evolutions where competitions are noformed between individuals.

c. Tournament,
within species.

d. All vs. best, g. All vs. best,
within species. between species.
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however since the strategy of the “best” individual can4 Creature Morphology
change suddenly between generations.

The number of species in the population is another eldn this work, the phenotype embodiment of a virtual creature
ment to consider when simulating evolutions involving com-is @ hierarchy of articulated three-dimensional rigid parts.
petition. A species may be described as an interbreedinghe genetic representation of this morphology is a directed
subset of individuals in the population. In single-speciegraph of nodes and connections. Each graph contains the
evolutions individuals will compete against their relatives,developmental instructions for growing a creature, and pro-
but in multi-species evolutions individuals can optionallyvides a way of reusing instructions to make similar or recur-
compete only against individuals from other species. Figurgéive components within the creature. A phenotype hierarchy
2 shows graphical representations of some of tHereift ~ Of parts is made from a graph by starting at a defioett

competition patterns described above for both one and tw@edeand synthesizing parts from the node information while
species. tracing through the connections of the graph. The graph can

The resulting décts of using these dirent competi- be recurrent. Nodes can connect to themselves or in cycles to
tion patterns is unfortunately @ifult to quantify in this form recursive or fractal like structures. They can also con-
work, since by its nature a simple overall measure of succe§€ct to the same child multiple times to make duplicate
is absent. Evolutions were performed using several of thi@stances of the same appendage.
methods described above with both one and two species, and Each node in the graph contains information describing
the results were subjectively judged. The most “interesting® rigid part. Thedimensionsletermine the physical shape of
results occurred when the all vs. best competition patterfie part. Ajoint-type determines the constraints on the rela-
was used. Both one and two species evolutions producéfe motion between this part and its parent by defining the
some intriguing strategies, but the multi-species simulationgumber of degrees of freedom of the joint and the movement

tended to produce more interesting interactions between ti@lowed for each degree of freedom. Thefedént joint-
evolving creatures. types allowed arerigid, revolute, twist, universal, bend-

twist, twist-bend or spherical Joint-limits determine the
point beyond which restoring spring forces will be exerted
for each degree of freedom. #ecursive-limit parameter
determines how many times this node should generate a phe-
notype part when in a recursive cycle. A set of loealons

is also included in each node, and will be explained further
in the next section. Finally node contains a seta@jnnec-
tionsto other nodes.

Each connection also contains information. The place-
ment of a child part relative to its parent is decomposed into
position, orientation, scaleandreflection so each can be
mutated independenthyfhe position of attachment is con-
strained to be on the surface of the parent part. Reflections
cause negative scaling, and allow similar but symmetrical
sub-trees to be described.términal-onlyflag can cause a
connection to be applied only when the recursive limit is
reached, and permits tail or hand-like components to occur at
the end of chains or repeating units.

Figure 3 shows some simple hand-designed graph topol-
ogies and resulting phenotype morphologies. Note that the
parameters in the nodes and connections sucbcassive-
limit are not shown for the genotype even though thiegtaf
the morphology of the phenotype. The nodes are anthropo-
morphically labeled as “bogy“leg segment,” etc. but the
— genetic descriptions actually have no concept of specific cat-

egories of functional components.

—>—<) _
@-4 5 Creature Behavior

A virtual “brain” determines the behavior of a creature. The

brain is a dynamical system that accepts input sensor values
Figure 3: Designed examples of genotype graphs anc  and provides output fefctor values. The output values are
responding creature morphologies. applied as forces or torques at the degrees of freedom of the

Genotype: directed graph.  Phenotype: hierarchy of 3D part
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body’s joints. This cycle of &cts is shown in Figure 4.

Sensor effector, and internal neuron signals are repre-
sented here by continuously variable scalars that may be pos-
itive or negative. Allowing negative values permits the
implementation of single ffctors that can both push and
pull. Although this may not be biologically realistic, it sim-
plifies the more natural development of muscle pairs.

Control system Physical simulation

5.1 Sensors

Each sensor is contained within a specific part of the,bodyrigyre 4: Cycle of efects between brain, body and wor
and measures either aspects of that part or aspects of the

world relative to that part. Three fiifent types of sensors ) . .
were used for these experiments: inputs, while others such as the oscillators retain some state

1. Joint angle sensorgive the current value for each and can give time varying outputs even when their inputs are
degree of freedom of each joint constant. The number of inputs to a neuron depends on its
2 Contact sensorgctivate il 0) if a contact is made function, and here is at most three. Each input contains a

and negatively activate (-1.0) if not. Each contact sensor h%)nqectlon to another neuron or a sensor from W_h'Ch o
a sensitive region within a patshape and activates when receive a value. Alternativelgn input can simply receive a

any contacts occur in that area. In this work, contact sensofgnstant value. The input values are first scaled by weights

are made available for each face of each part. No distincti(}?lefore being .operated on. Th? genetic parameters for e_ach

is made between self-contact and environmental contact, "€Ural node include these weights as well as the function
3. Photosensorseact to a global light source position. typeFand thehcor_melctlor(; mformgﬂon. |

Three photosensor signals provide the coordinates of the or each simulated time interval, every neuron com-

normalized light source direction relative to the orientatiorPUtes fts output value from its inputs. In this work, two brain

of the part. Shadows are not simulated, so photosensors célﬁ‘?e step_s arle performed fo: eta;]ch d);]namllg sllmulatlon tlmteh
tinue to sense a light source even if it is blocked. Photosefi-_P SO SIgnais can propagate through muftiple neurons wi

sors for two independent colors are made available. ThlgSS delay

source of one color is located in the desirable cube, and t%% Effectors

other is located at the center of mass of the opponent. This

effectively allows evolving nervous systems to incorporateEach efector simply contains a connection from a neuron or

specific “cube sensors” and “opponent sensors.” a sensor from which to receive a value. This input value is
Other types of sensors, such as accelerometers, addealed by a constant weight, and then exerted as a joint force

tional proprioceptors, or even sound or smell detectors coul@hich afects the dynamic simulation and the resulting

also be implemented, but these basic three are enough iehavior of the creature. Béfent types of ééctors, such as

allow some interesting and adaptive behaviors to occur  sound or scent emitters, might also be interesting, but only

effectors that exert simulated muscle forces are used here.
5.2 Neurons Each efector controls a degree of freedom of a joint.

. . The efectors for a given joint connecting two parts, are con-
Internal neural nodes are used to give virtual creatures tr%e

o ) . ained in the part further out in the hierarchy that each
possibility of arbitrary behaviofThey allow a creature to . . R
. . on-root part operates only a single joint connecting it to its
have an internal state beyond its sensor values, and be

affected by its history parent. The angle sensors for that joint are also contained in

: . : this part.
In this work, diferent neural nodes can perform diverse L . .
. . . . Each efector is given anaximum-s&ngthproportional
functions on their inputs to generate their output S|gnalst.ot

. A he maximum cross sectional area of the two parts it joins.

Because of this, a creatusdirain might resemble a dataflow i
computer program more than a typical artificial neural net_Ef“fector forces are scaled by these strengths and not permit-
ted to exceed them. This is similar to the strength limits of

work. This approach is probably less biologically reaIIStIC|aatural muscles. As in nature, mass scales with volume but

than just using sum and threshold functions, but it is hOpestrength scales with area, so behavior does not always scale

that it makes the evolution of interesting behaviors more .
uniformly.

likely. The set of functions that neural nodes can have is:

sum, poduct, divide, sum-teshold, geaterthan, sign-of, g4 Combining Mor phology and Control

min, max, abs, if, interpolate, sin, cos, atan, log, expt, sig-

moid, integrate, diffantiate, smooth, memeorpscillate- The genotype descriptions of virtual brains and the actual

wave,andoscillate-saw phenotype brains are both directed graphs of nodes and con-
Some functions compute an output directly from theimections. The nodes contain the sensors, neurons, feced ef
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tors, and the connections define the flow of signals between
these nodes. These graphs can also be recurrent, and as a
result the final control system can have feedback loops and
cycles.

However most of these neural elements exist within a
specific part of the creature. Thus the genotype for the ner-
vous system is a nested graph: the morphological nodes each
contain graphs of the neural nodes and connections. Figure 5
shows an example of an evolved nested graph which
describes a simple three-part creature as shown in figure 6.

When a creature is synthesized from its genetic descrip-
tion, the neural com_ponents described_within each part arﬁgure 6a: The phenotype morphology generated fi
generated along with the morphgloglcal structure.' Th|s,[he evolved genotype shown in figure 5.
causes blocks of neural control circuitry to be replicateu
along with each instanced part, so each duplicated segment
or appendage of a creature can have a similar but indepen-
dent local control system.

These local control systems can be connected to enable ~ Sensors Neurons Effectors
the possibility of coordinated control. Connections are
allowed between adjacent parts in the hierarthg neurons
and efectors within a part can receive signals from sensors P1
or neurons in their parent part or in their child parts.

Creatures are also allowed a set of neurons that are not
associated with a specific part, and are copied only once into
the phenotype. This gives the opportunity for the develop- co
ment of global synchronization or centralized control. These
neurons can receive signals from each other or from sensors
or neurons in specific instances of any of the creatpaats,
and the neurons andfegtors within the parts can optionally
receive signals from these unassociated-neuron outputs. PO —

In this way the genetic language for morphology and
control is meged. A local control system is described for
each type of part, and these are copied and connected into
the hierarchy of the creatusebody to make a complete dis- Qo
tributed nervous system. Figure 6a shows the creature mor-
phology resulting from the genotype in figure 5. Again,
parameters describing shapes and weight values are not -

|
shown for the genotype even though thdgctfthe pheno- co ){ * e
N

I

-0.96

PO o1 S+7? 84

Qo0

Figure 5: Example evolved nested graph genotype.

outer graph in bold describes a creatmbrphologyThe

inner graph describes its neural circuit§0, PO, P1, an Figure 6b: The phenotype “brain” generated from
QO are contact and photosensors, EO and E1 feetaf evolved genotype shown in figure 5. Théeefor output:
outputs, and those labelet! “and “s+?” are neural nodi of this control system cause the morphology above ti
that performproductandsum-thesholdfunctions. forward in tumbling motions.
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type. Figure 6b shows the corresponding brain of this creghysical modeling system, it is not necessarily the most
ture. The brackets on the left side of figure 6b group theractical.

neural components of each parwdl groups have similar

neural systems because they were synthesized from the saimeCreature Evolution

genetic description. This creature can roll over the ground by

making cyclic tumbling motions with its two arm-like An evolution of virtual creatures is begun by first creating an
appendages. Note that it can beficlifit to analyze exactly Initial population of genotypes. Seed genotypes are synthe-
how a control system such as this works, and some compdized “from scratch” by random generation of sets of nodes
nents may not actually be used at all. Fortunateyrimary and connections. Alternativelgn existing genotype from a

benefit of using artificial evolution is that understandingPT€Vious evolution can be used to seed an initial population.
these representations is not necessary Before creatures are paired @dr competitions and fit-

ness evaluation, some simple viability checks are performed,
and inappropriate creatures are removed from the population
by giving them zero fithess values. Those that have more
Dynamics simulation is used to calculate the movement ghan a specified number of parts are removed. A subset of
creatures resulting from their interaction with a virtual threegenotypes will generate creatures whose parts initially inter-
dimensional world. There are several components of theenetrate. A short simulation with collision detection and
physical simulation used in this work: articulated bodyresponse attempts to repel any intersecting parts, but those
dynamics, numerical integration, collision detection, andereatures with persistent interpenetrations are also discarded.
collision response with friction. These are only briefly sum- A survival-ratio determines the percentage of the popu-
marized here, since physical simulation is not the emphastation that will survive each generation. In this work, popula-
of this paper tion sizes were typically 300, and the survival-ratio was 1/5.

Featherstone’ recursive O(N) articulated body method If the |n|t|a”y generated pOpUlation has fewer individuals
is used to calculate the accelerations from the velocities a¥th positive fitness than the number that should survive,
external forces of each hierarchy of connected rigid parts [5fnother round of seed genotypes is generated to replace
Integration determines the resulting motions from thes&10Se with zero fitness. _
accelerations and is performed by a Runge-Kutta-Fehlber ~ FOr each generation, creatures are grown from their gen-
method which is a fourth order Runge-Kutta with an addi®tyPes, and their fitness values are measured by simulating
tional evaluation to estimate the error and adapt the step i€ O more competitions with other individuals as
Typically between 1 and 5 integration time steps are peldesgrlbed. The .|nd|V|duaIs whose fithesses fall .Wlt.hln the
formed for each frame of 1/30 second. survival percentile are then reproduced, and théapdhg

The shapes of parts are represented here by simple refill the slots of _those individuals _th_at (_jid _n_ot survive. The
angular solids. Bounding box hierarchies are used to reduf&!Mmber of aispring that each surviving individual generates
the number of collision tests between parts fromeOPairs IS prop(_)rtlonal to its fitness. The survivors are kept in the
whose world-space bounding boxes intersect are tested fgppulat!on for th(_a ne_xt generatlor_L and_ the total Size of the
penetrations, and collisions with a ground plane are alsBopulation IS mgm_tamed. In muIt|-speC|e_s evc_)lut|ons, each
tested. If necessarhe previous time-step is reduced to keep>UP-Population is independently treated in this way so the

any new penetration depths below a certain tolerance. coRumber of individuals in each species remains constant and

nected parts are permitted to interpenetrate but not rotatd €¢Ies d‘? hot die out. -
completely through each otheFhis is achieved by using Offspring are generated from the surviving creatures by

adjusted shapes when testing for collisions between cor‘f—Oloying and combining their directed graph genotypes.

nected parts. The shape of the smaller part is clipped halfvv?w?/hen these graphs are reproduced they are subjected to

back from its point of attachment so it can swing freely unti robabilistic varla_\tlc_)n or mu_tat|on, so the corresponding
its remote end makes contact. phenotypes are similar to their parents but have been altered

Collision response is accomplished by a hybrid modef" adjusted in random ways.
using both impulses and penalty spring forces. At highm_ M utating Directed Graphs
velocities, instantaneous impulse forces are used, and at low
velocities springs are used, to simulate collisions and com directed graph is mutated by the following sequence of
tacts with arbitrary elasticity and friction parameters. steps:

It is important that the physical simulation be reason- 1. The internal parameters of each node are subjected to
ably accurate when optimizing for creatures that can movpossible alterations. A mutation frequency for each parame-
within it. Any bugs that allow engy leaks from non-conser- ter type determines the probability that a mutation will be
vation, or even round-berrors, will inevitably be discov- applied to it at all. Boolean values are mutated by simply
ered and exploited by the evolving creatures. Although thiflipping their state. Scalar values are mutated by adding sev-
can be a lazy and often amusing approach for debuggingesal random numbers to them for a Gaussian-like distribution

6 Physical Simulation
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so small adjustments are more likely than drastic ones. The ] .
. - . . a. Crossovers: b. Grafting:
scale of an adjustment is relative to the original value, so

large quantities can be varied more easily and small ones can 52 52? )é DA
be carefully tuned. A scalar can also be negated. After arent1 ({d%b (5?52)

mutation occurs, values are clamped to their legal bounds. X parent 1 parent 2
Some parameters that only have a limited number of leggdarent 2 ¥
values are mutated by simply picking a new value at random ' ,
from the set of possibilities. ({d%a'fb
2. A new random node is added to the graph. A new child (5252%2) child

node normally has nofett on the phenotype unless a con-
nection _al_sp mutates a pointer to it. Therefore a new node_ is Figure 7: Two methods for mating directed graphs.

always initially added, but then garbage collected later (in

step 5) if it does not become connected. This type of muta- = . . .

tion allows the complexity of the graph to grow as an evolydle individual. o dlfferent methods for mating directed
tion proceeds. graphs are used in this work.

3. The parameters of each connection are subjected to The first is acrossoveroperation (figure 7a). The nodes
possible mutations in the same way the node paramete$ WO parents are each aligned in a row as they are stored,
were in step 1. \th some frequency the connection pointer@nd the nodes of the first parent are copied to make the child,
is moved to point to a di#rent node which is chosen at ran- but one or more crossover points determine when the copy-
dom. ing source should switch to the other parent. The connec-

4. New random connections may be added and existingPns of a node are copied with it and simply point to the
ones may be removed. In the case of the neural graphs th&sgne relative node locations as before. If the copied connec-
operations are not performed because the number of input§ns now point out of bounds because of varying node num-
for each element is fixed, but the morphological graphs cabers they are randomly reassigned.
have a variable number of connections per node. Each exist- A second mating methagtafts two genotypes together
ing node is subject to having a new random connectioRY connecting a node of one parent to a node of another (fig-
added to it, and each existing connection is subject to possite 7b). The first parent is copied, and one of its connections
ble removal. is chosen at random and adjusted to point to a random node

5. Unconnected elements are garbage collected. Cofft the second parent. Newly unconnected nodes of the first
nectedness is propagated outwards through the connectigd@rent are removed and the newly connected node of the sec-
of the graph, starting from the root node of the morphglogyond parent and any of its descendants are appended to the
and from the déctor nodes of the neural graphs. Althoughnew graph.
leaving the disconnected nodes for possible reconnection A new directed graph can be produced by either of these
might be advantageous, and is probably biologically analdwo mating methods, or asexually by using only mutations.
gous, at least the unconnected newly added ones agfspring from matings are sometimes subjected to muta-
removed to prevent unnecessary growth in graph size. tions afterwards, but with reduced mutation frequencies. In

Since mutations are performed on a per element basilis work a reproduction method is chosen at random for
genotypes with only a few elements might not receive angach child to be produced by the surviving individuals using
mutations, where genotypes with many elements woulthe ratios: 40% asexual, 30% crossovers, and 30% grafting.
receive enough mutations that they would rarely resembld second parent is chosen from the survivors if necessary
their parents. This is compensated for by scaling the mutand a new genotype is produced from the parent or parents.
tion frequencies by an amount inversely proportional to the  After a new generation of genotypes is created, a pheno-
size of the current graph being mutated, such that on tHgpe creature is generated from each, and again their fitness
average at least one mutation occurs in the entire graph. values are evaluated. As this cycle of variation and selection

Mutation of nested directed graphs, as are used here ¢ontinues, the population is directed towards creatures with
represent creatures, is performed by first mutating the outéigher fitness.
graph and then mutating the inner layer of graphs. The inner
graphs are mutated last because legal values for some 68 Parallel Implementation
their parameters (intevode neural input sources) can

depend on the topology of the outer graph. This process has been implemented to run in parallel on a

Connection MachirreCM-5 in a master/slave message pass-
7.2 Mating Directed Graphs ing model. A single processing node contains the population
and performs all the selection and reproduction operations. It
Sexual reproduction allows components from more than orfarms out pairs of genotypes to the other nodes to be fithess
parent to be combined into newfsgring. This permits fea- tested, and gathers back the fithess values after they have
tures to evolve independently and later begadrinto a sin- been determined. The fitness tests each include a dynamics
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simulation for the competition and although many can exe- 2.0
cute in nearly real-time, they are still the dominant computa-
tional requirement of the system. Performing a fithness test
per processor is a simple butegtive way to parallelize this  giness
process, and the overall performance scales quite linearly
with the number of processors, as long as the population size 1.0
is somewhat layer than the number of processors.

Each fithess test takes afdient amount of time to
compute depending on the complexity of the creatures and
how they attempt to moveoTprevent idle processors from
just waiting for others to finish, the slowest few simulations &. 0.0 ' ' '

) o 25 50 75 100

at the end of a generation are suspended and those individu- generations
als are removed from the population by giving them zero fit-
ness. Vith this approach, an evolution with population size 2.0
300, run for 100 generations, might take about four hours to
complete on a 32 processor CM-5.

fitness

8 Results and Discussion
1.0

Many independent evolutions were performed using the “all

vs. best” competition pattern as described in section 3. Some

single-species evolutions were performed in which all indi-

viduals both compete and breed with each othet most

included two species where individuals only compete withb. 0.0 ! ! j

members of the opponent species. 25 gengroations 5 100
Some examples of resulting two-species evolutionary

dynamics are shown in Figure 8. The relative fitness of the 2

best individuals of each species are plotted over 100 genera-

tions. The rate of evolutionary progress varied widely in dif-

ferent runs. Some species took many generations before they, ..

could even reach the cube at all, while others discovered a

fairly successful strategy in the first 10 or 20 generations. 1.0

Figure 8c shows an example where one species was success-

ful fairly quickly and the other species never evolved an

effective strategy to challenge it. The other three graphs in

figure 8 show evolutions where more interactions occurred

between the evolving species. C.oo— . o Lh i
A variety of methods for reaching the cube were discov- 25 gengf’aﬁons & 100

ered. Some extended arms out onto the cube, and some

reached out while falling forward to land on top of it. Others 2.0

could crawl inch-worm style or roll towards the cube, and a

few even developed leg-like appendages that they used to

walk towards it. fitness
The most interesting results often occurred when both

species discovered methods for reaching the cube and then 1.0

further evolved strategies to counter the oppordmthav-

ior. Some creatures pushed their opponent away from the

cube, some moved the cube away from its initial location

and then followed it, and others simply covered up the cube

to block the opponerst’access. Some counstrategies took d. oo 2'5 5'0 25 10'0

advantage of a specific weakness in the original strategy and generations

could be easily foiled in a few generations by a minor adap-

tation to the original strategpthers permanently defeated

the original strategy and required the first species to evolvFigure 8: Relative fitness between two co-evolving

another level of countaounterstrategy to regain the lead. competing species, from four independent simulations
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In some evolutions the winners alternated between speciggich creatures compete in féifent environments and dif-
many times with new strategies and cousteategies. In  ferent rules determine the winners. Creatures might also be
other runs one species kept a consistent lead with the oth@warded for cooperative behavior somehow as well as com-
species only providing temporary challenges. petitive, and teams of interacting creatures could be simu-
After the results from many simulations were observedjated.
the best were collected and then played against each other in Evolutions containing lger numbers of species should
additional competitions. The é#rent strategies were com- certainly be performed, with the hope of increasing the
pared, and the behavior and adaptability of creatures wetgances for emgence of more adaptive individuals as
observed as they faced new types of opponents that were ngfpothesized above.
encountered during their evolutions. A few evolutions were  An additional extension to this work would be to simu-
also performed starting with an existing creature as a seggke a more complex but more realistic environment in which
genotype for each species so they could further evolve t@any creatures simultaneously compete and/or cooperate
compete against a new type of opponent. with each anotheinstead of pairing 6fin one-on-one con-
Figure 9 shows some examples of evolved competingsts. Speciation, mating patterns, competing patterns, and
creatures and demonstrates the diversity of thierdit  eyen ofspring production could all be determined by one
strategies that emged. Some of the behaviors and interac-5ng ecological simulation. Experiments like this have been
tions of these specific creatures are described briefly herﬁerformed with simpler ganisms and have produced inter-

The lager creature in figure 9b nudges the cube aside anding results including specialization and various social
then pins down his smaller opponent. The crab-like creaturfiaractions [18,24]

in 9c can successfully walk forward, but then continues  pgang the techniques presented here should be consid-
blindly past the cube anq over the .opponent. Figure 9gred as an approach toward creating artificial intelligence.
shows a creature that has just pushed its opponent away fr en a genetic language allows virtual entities to evolve

the cube, and the arm-like creature in 9e also jabs at its OPRYitH increasing complexityit is common for the resulting

nent before curling around thg cgbe. - system to be difcult to understand in detail. In many cases it
Most creatures perform similar behavior independentl . . ] .

o L ould also be dffcult to design a similar system using tradi-
of the opponeng’ actions, but a few are adaptive in that they. : .
: tfonal methods. @chniques such as these have the potential

can reach towards the cube wherever it moves. For examp . -y :
. . : of surpassing those limits that are often imposed when
the arm-like creature in figure 9f pushes the cube aside arﬁd derstandi d desian i ed. Th |
then uses photosensors to adaptively follow it. If its oppo- uman understanding and design 1S required. 1he examples

nent moves the cube in afaifent direction it will success- presented here suggest that it might be easier to evolve vir-
fully grope towards the new location tual entities exhibiting intelligent behavior than it would be

The two-armed creature in figure 9g blocks access to tHg" umans to design and build them.
cube by covering it up. Several other two-armed creatures in )
9i, 9j, and 9k use the strategy of batting the cube to the siddd Conclusion

with one arm and catching it with the other arm. This seemeg summarya system has been described that can automati-

to be the most SUCC?SSfUI strategy of the creatures n th&?ﬂlly generate autonomous three-dimensional virtual crea-
group, and the one in 9k was actually the overall winne

because it could whisk the cube aside very quicigw- fures that exhibit diverse competitive strategies in physically

: . . ... simulated worlds. A genetic language that uses directed
ever it was a near tie between this and the photosensitive . ; )

. . . : graphs to describe both morphology and behavior defines an
arm in 9f. The lager creature in 9m wins by a dg@ magin

. . . unlimited hyperspace of possible results, and a variety of
against some opponents because it can literally walk aW&}Xterestin virtual creatures have been shown to er
with the cube, but it does not initially reach the cube very 9 gen

quickly and tends to loose against faster opponents. when this h)./per.spgcte is explored by populations of evolving
It is possible that adaptation on an evolutionary scalélnd competing individuals.

occurred more easily than the evolution of individuals that

were themselves adaptive. Perhaps individuals with adaptive

behavior would be significantly more rewarded if evolutions

were performed with many species instead of just one cAcknowledgments

two. To be successful, a single individual would then need to o
defeat a lager number of dferent opposing strategies. Thanks to Gary Oberbrunner and Matt Fitzgibbon for Con-

nection Machine and software support. Thanks to Thinking
9 Future Work Machines Corporation and Lewudker for supporting this

research. Thanks to Bruce Blum@pemd Peter Schroder for
Several variations on this system could be worth furthedynamic simulation help and suggestions. And special
experimentation. Other types of contests could be defined thanks to Pattie Maes.
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