
 
  

The Exploratory Media Lab 
MARS   Media Arts & Research Studies 

netzspannung.org   
Wissensraum für digitale Kunst und Kultur 

PAAL, Stefan 
KAMMÜLLER, Reiner 
FREISLEBEN, Bernd 
 
 

Adaptable Web Interfaces for 
Heterogeneous Data Sources. 
 
 
 
Publiziert auf netzspannung.org: 
http://netzspannung.org/about/technology/ 
24.06.2004 
 
     
Erstveröffentlichung: Proceedings of the 2nd Conference on Internet 
Computing (IC 2001). Las Vegas, USA. CSREA 2001. S. 827-834. 
 

 



 

 

Adaptable Web Interfaces for Heterogeneous Data 
Sources 

Stefan Paal 
German National Research 

Center for Information 
Technology 

St. Augustin, Germany 

Reiner Kammüller 
University of Siegen 

Dept. of Computer Science 
Siegen, Germany 

Bernd Freisleben 
University of Siegen 

Dept. of Computer Science 
Siegen, Germany 

Abstract. While the amount of information available over the internet is steadily growing, there is an increasing 
demand to efficiently and effectively make use of various shared information resources over the World Wide Web 
(WWW). Ideally, WWW applications should be shielded from the heterogeneous nature of underlying storage 
systems, and existing data sources should be transparently glued together by relying on a uniform WWW interface. 
In this paper, we present a new approach to develop a distributed storage system which achieves this goal for 
application users and additionally allows system developers to dynamically adapt the access to shared information 
to the needs of new applications. The proposed storage system is based on a new document-oriented storage 
approach which hides specific storage implementations from the applications using the data, while it is transparently 
extensible with new functionalities without breaking existing implementations. An example of its use is presented to 
demonstrate the feasibility of our proposal. 

Keywords:  web interface; data sharing; heterogeneous environment; adaptable; database; distributed storage system 
 

1. Introduction 

Although we have used the internet for several 
years to share common knowledge, we are still 
unable to shape truly integrated World Wide Web 
(WWW) information systems. Particularly, their 
usage is often limited by providing access only to 
a single information space, not allowing to cross 
the borders of heterogeneous systems. Certainly, 
search engines like Google or Yahoo claim to 
break these limits, but they do not work on 
structured data nor can they access relational or 
object-oriented database systems (RDBMS or 
OODBMS). Furthermore, they do not offer an 
interface to access the information, rather they 
simply provide URLs for locating the resources.  

 In addition, information repositories are 
typically designed from scratch. This has led to 
databases obeying different sets of constraints to 
model the same information. Although one may 
potentially be able to access all available 
databases, in reality this is an almost impossible 
task due to the large variety of storage interfaces. 
A straightforward approach would be to define a 
common storage interface and to force all 
information providers to implement this interface. 
But this would limit the potential functionalities 
of accessing the data, loosing the advantages of 
high level semantic access to particular 
application-dependent data repositories.  

Consequently, instead of defining a static 
storage interface which covers common access 
features to different databases, we should provide 



 

 

a dynamic storage access system to integrate the 
data sources in a uniform way. 

Due to the diversity of information and the 
various options to process and visualize it, another 
emerging demand is the customizable access to 
web repositories tailored to the specific needs of 
the user [1,2]. Therefore, different applications 
may be used concurrently, which should be able 
to access commonly shared data with specialized 
interfaces. The challenge is to give a user the 
illusion that he or she is accessing a commonly 
shared web knowledge space, containing various 
repositories beneath a uniform web interface 
tailored to his or her needs. 

In this paper, we present an approach to cope 
with these problems and introduce a distributed 
storage system which is able to integrate various 
existing WWW data sources to form a shared 
information system and offers possibilities to the 
developers to access different data sources using 
storage adapters. Furthermore, the proposed 
storage system is open enough to be extended 
with new data sources without breaking existing 
implementations. The underlying idea of this 
approach is to introduce a new document oriented 
storage architecture, wherein data and the related 
methods are no longer separated and the 
applications can benefit from a high-level API, 
hiding the specific storage implementation. 

The paper is organized as follows. In section 2, 
we discuss features of web information systems, 
especially regarding the integration of different 
data sources. Section 3 presents our approach in 
detail, followed by section 4 with a description of 
the implementation. Section 5 concludes the paper 
and outlines areas of future work.  

2. Web Information Systems 

In this section, we briefly discuss the relevant 
issues of web information systems with respect to 
distributed storage systems. The discussion is 
based treating the demands of users and 
developers separately. 

The user of a web information system expects 
an implementation which can be tailored to his or 
her specific needs, triggered by himself or herself. 
On the other hand, a user does not want to be 
bothered by changes of the underlying 
implementation details like database types or 

network connections. Thus, the used storage 
system should be able to operate independently of 
the source and format of the used data, and the 
composed parts should be able to interact 
dynamically, forming new storage components. 

The developer expects from a web information 
system to be open enough for various 
applications. There should be support to 
implement new features and to extend the existing 
system, rather than implementing a new one. 
Additionally, the use of standards regarding tools, 
programming languages, network protocols or 
database types eases the acceptance through the 
developers and shortens the development time. 
On the other hand, runtime support is needed with 
respect to the adaptation of the system. The 
system should also provide the possibility to plug 
in components dynamically. Common features, 
such as handling of access control, should be 
portable between the components and the 
environment has also to be future-proof and 
flexible enough to integrate new extensions 
without breaking existing implementations.  

Consequently, we summarize the objectives of 
a web information system with respect to the 
underlying data sources as follows: 
• The storage system cannot be implemented as 

a monolithic system, rather it must be 
composed from individual components. 

• The storage system must provide interfaces to 
access these components and their functions in 
a uniform way, which do not rely on 
component specific features, but also allow the 
components to introduce more specialized 
functions.   

• The storage system should be dynamically 
extensible with components providing access 
to new application-specific data formats or 
documents, integrating other storage systems 
as well as introducing new, document 
orthogonal functionalities like concurrency 
handling, awareness services, access control. 
There are several approaches [3,4] to solve the 

adaptation problem and to provide extensibility 
and composability of storage systems in this 
context with techniques like open 
implementations or reflection [5] However, these 
approaches offer only partial solutions with 
respect to the objectives defined above. For 
example, [6] addresses flexible data sharing 



 

 

within groupware systems, but does not deal with 
heterogeneous environments. Other approaches 
like Enterprise Java Beans [7] are limited to 
particular languages like Java or C++ [8,9], 
network protocols [10,11], database environments 
[12,13,14] and user interface [8,15], thus are not 
transferable to other scenarios. Furthermore, there 
are approaches which support the adaptation of 
information systems, but they do not solve the 
problem concerning separation of data and their 
corresponding operations [16,17]. To the best of 
our knowledge, there is no approach addressing 
all of the defined objectives.  

3. A Distributed Storage System  

In this section, we present the basic concepts 
of our distributed storage system and its features. 
At first, we outline the principles of different 
levels of data abstractions in commonly used 
system designs. In addition, we describe the basic 
approaches to share distributed data and compare 
their properties related to providing transparent 
access and their employment in heterogeneous 
environments. Afterwards, we illustrate how 
transparent access to various data sources can be 
achieved by introducing adapters, shifting the 
handling of low-level data structures from the 
application to the data sources. Therefore, 
applications providing web access do not have to 
deal with particular data source implementations 
in the internet. 

3.1 Levels of Data Abstractions 

The main architectural disadvantage of 
existing storage systems is the lack of exact 
knowledge about the data they store. Certainly, 
there are different types of storage systems for 
various applications, and they provide different 
approaches for storing data. However, many of 
them end at the logical representations of the data, 
i.e. they use the underlying physical data format 
like sectors on a hard disk and map their logical 
data format like relational tables on it. The given 
interfaces deal more or less perfectly with the 
access to this data format, providing various 
application-independent functions like access and 
concurrency control. This feature is on the one 
hand an advantage, because it is usable for 

different application types, on the other hand it is 
a disadvantage, since the application has to be 
adapted to the used storage system by mapping 
the specific document format again onto the 
logical representation, and by introducing a 
document interface as it is shown in Figure 1. 

 

Document
Format

Physical
Format

Filesystem Network

Logical
Format

Relational Object-oriented Directory

Application specific

 
 

Figure 1: Levels of Data Abstraction 
 
Although this approach works well for single, 

stand-alone applications, it fails in case of 
distributed, heterogeneous storage systems, which 
have to provide access for many application types 
and which in addition should be able to be 
extended dynamically by new logical formats. In 
this scenario, all applications sharing the same 
document format have to be adapted to use the 
specific logical data format of the current storage 
system. Furthermore, every change of the storage 
systems has a direct impact on the application 
implementation, thus making the whole system 
more statically than dynamically extensible.  

3.2 Accessing Distributed Data in 
Heterogeneous Environments 

The introduction of the two-layer architecture 
(Figure 2, left) with separated application logic 
and database server is the first step to improve the 
situation mentioned above, but does not overcome 
the basic problem. However, it can be used to 
provide distributed access to shared storage 
systems. Due to the lack of an application-
independent way for adapting heterogeneous 
logical formats, existing implementations use the 
data sources as they are, resulting in a tight 



 

 

binding with the specific data source. Commonly 
used database interfaces like ODBC or JDBC do 
not change anything about it, since they work on 
the logical format and inherit the disadvantages 
mentioned above. 

Storage System

Logical Format

Physical Format

Application Server

Document Format

Application Logic

Storage System

Logical Format

Physical Format

Application Server

Document Format

Application Logic

 
 

Figure 2: Storage and Document Oriented Access 
 
Several approaches go a step further, 

enhancing the database server with additional 
storage components like Enterprise Java Beans [7] 
and providing access on a higher abstraction level, 
shifting the document format layer onto the 
database server (Figure 2, right). At first glance, 
the problems seem to be solved, but in fact, the 
provided solutions are intended for and thus 
restricted to limited application scenarios. Either 
they support only one single database type or are 
restricted to certain programming languages. 
Furthermore, they often cannot be extended and 
mixed transparently with other, existing storage 
systems. This is particularly important in an open, 
adaptable environment, which will be 
dynamically changed and extended.  

3.3 Uniform Storage Access 

Both users and developers of web information 
systems do not want to deal with different types 
of storage sources, rather they want to access the 
documents independent of where and how they 
are stored. To realize transparent and uniform 
access to heterogeneous data sources, we 
introduce the concept of a storage adapter which 
hides the implementation of the underlying data 
source (Figure 3, left). Thus, we can integrate 
different types of storage systems, and the 
application is able to access them in a transparent, 

uniform way. An example from one of our 
projects is the parallel use of an object-oriented 
database like Poet and a relational database like 
Postgres. Even if they have completely different 
approaches to store data in their logical format, 
they implement the commonly used document 
interface, enabling the application to access the 
data in the same way and hiding database specific 
implementations.  

 

Distributed Storage System

Application
A

Data
Source

Document
Adapter

A

Document
Adapter

B

Storage Interface

Application
B

Distributed Storage System

Application

Data
Source A

Data
Source B

Storage
Adapter

A

Storage
Adapter

B

Document Interface

 
 

Figure 3: Uniform Storage and Document Access 
 
The introduced approach is not only applicable 

to conventional storage systems like databases 
and file systems, but also for more abstract 
storage systems like network connections or any 
kind of data exchange. Consequently, the 
proposed distributed storage system represents a 
new abstraction which combines several other 
approaches. It is the foundation for composing a 
commonly shared information space, spanning 
different data sources.  

3.4 Uniform Document Access 

Since applications and document formats are 
changed over time, requirements are modified or 
new ones are added, but the stored data should 
still be accessible by all corresponding 
applications, we additionally introduce so called 
document adapters (Figure 3, right). They prepare 
the data access for each document type 
individually. For example, in one of our projects 
we have provided document adapters for 
proprietary access to the data as well as document 
adapters which convert the stored data on the fly 
to XML (Extended Markup Language). Thus, we 
can share the same data with different co-existing 



 

 

application types, and each user can work with his 
or her preferred application. In addition, this 
approach also ensures  that the user does not have 
to change the web application when he or she 
accesses another information system, rather the 
application can access different document formats 
in a uniform way. 

3.5 Document-Oriented Approach 

The usage of storage and document adapters does 
not only shield an application from the underlying 
storage systems and the evolution of document 
formats, it also offers a new document-oriented 
approach to extend the functionality transparently 
and simultaneously without breaking existing 
implementations (Figure 4). 

 

Document Adapter
A

Storage Adapter
1

Document Extensions

Data
Source 1

Storage Adapter
2

Data
Source 2

Document Adapter
B

Application
A

Application
B

 
 

Figure 4: Document Oriented Approach 
 

The basic idea of this approach is to introduce 
an additional layer between storage and document 
specific adaptation, where document extensions 
can be integrated transparently and reused 
between various versions of implementation. The 
extensions can enhance the current document 
interface with new specific features like 
awareness, but also with orthogonal aspects like 
access control or concurrency control.  

4. Implementation Issues 

After having illustrated the basic concepts of the 
distributed storage system and uniform data  
access, we present in this section an overview of 

the implementation which we have developed and 
used in several projects. 

4.1 Overview 

The logical architecture of the distributed 
storage system (Figure 5) mainly consists of three 
layers, which contain the document and storage 
adapters introduced in the previous section as well 
as the document handling layer. On the bottom, 
there are the different storage systems, storing the 
data in their physical data format and providing 
logical access. On the top, there are the 
applications accessing the stored data in a 
transparent and uniform way. For both, the 
distributed storage system acts as a glue, which 
connects different applications and storage 
systems. In particular, the adaptation and 
composition of new document handling features 
can be made dynamically, integrated in the 
document handling layer without breaking the 
application implementation. 

 
Application

Scalable Document Provider Interface (SDPI)

Oracle Postgres ...
Physical
Format

Logical
Format

Document
Format

Document
Adapter

Storage
Adapter

Storage XMLVersionStream ...

HTTPJDBCSOAPJDBC ...

Scalable Storage Provider Interface (SSPI)

Network Network

Document Extensions

 
Figure 5: Distributed Storage System 

 
We have implemented the presented system in 

C++ and also in Java, which both allow us to use 
object-oriented approaches, but differ in the 
support for creating a scalable, adaptable storage 
framework. In this context, the main problem to 
solve is the adaptation of different existing 
interfaces in a way that the caller and the called 
method do not have to be changed, since they also 
often cannot be modified. For this purpose, a 



 

 

software design pattern, the Object Adapter 
pattern or a variation of it, the Proxy Pattern, is 
applied, which takes the method call from the 
caller and delegates it further to the right 
implemented method. In addition, the adapter 
could modify the method call, e.g. by changing 
calling parameters or even could call other 
methods [18].  

Since the software development started some 
years ago, there were no tools to automate the 
application of these patterns. We were forced to 
integrate the patterns into our source code, thus 
dealing manually with many software layers and 
cluttering the source code with recurrent portions 
of adapter code. The introduction of Aspect-
Oriented Programming (AOP) and related tools 
described in [19] offer an approach to automate 
this in an elegant manner. Instead of mixing the 
source code for handling the actual storage system 
with the adapter and proxy code, the development 
can easily be separated. Even more, the same 
common functionalities, also called aspects, such 
as access or concurrency control, can be reused 
for different storage systems. However, although 
AOP is an interesting approach for adapting 
existing source code, it is applied during software 
development time. This limits its usage for 
scenarios where the source code is available. 
Currently, there are several works in progress to 
overcome these limitations, especially in Java 
environments using the language inherent 
reflection techniques [3].  

4.2 Example 

The project we want to present is called CAT 
(Communication, Art & Technology) [20], which 
is intended to build up the upcoming information, 
communication and production platform for art, 
culture and new media in Germany, called 
netzspannung.org [21]. It is funded by the 
German Federal Ministry for Education and 
Research and will be developed by the research 
group IMK/MARS from GMD, St. Augustin in 
cooperation with the University of Siegen, 
Germany. The CAT platform is heavily based on 
a distributed system especially developed for 
connecting open communities spread over the 
internet in a new way. The members of these 
communities have no longer to rely on rigid 

structures with given network architectures, 
protocols and data formats, but rather they want to 
be able to build a community tailored to their 
specific needs.  

For this purpose, the platform can be extended 
dynamically with self-defined modules and data 
storage systems, which are spread into the 
community network or stored on a dedicated 
machine at the member's home. In addition, 
netzspannung.org can be seen as a glue for 
connecting various existing resources like huge 
databases, search engines and internet portals. 
This could happen in a flexible manner from the 
database level up to the user interface, depending 
on the desired degree of interaction. Therefore, 
users as well as developers of netzspannung.org 
benefit greatly from the proposed distributed 
storage system. 

Figure 6 outlines how an application, in this 
case an implementation of a web-based forum, 
can benefit from the presented storage system.  

Forum Application
V 1.0

Forum Application
V 2.0

Postgres

Document Adapter
V1.0

Document Adapter
V2.0

Storage Adapter
JDBC

Storage Adapter
CORBA

Concurrency Handling,
Awareness Services, Access Control

CORBA Network  
 
Figure 6: Integrating Different Data Sources and 

Document Formats 
 
Firstly, we have to integrate transparently 

various data sources like the object-relational 
database Postgres and a CORBA network 
connection. Both are linked to the system by two 
specialized storage adapters, therefore shielding 
the system from storage specific properties. 
Secondly, the internet platform netzspannung.org 
is an open community system which offers 
members the ability to adapt interfaces and the 
way documents are processed. This leads to 



 

 

different forum implementations, illustrated in 
figure 6 by V1.0 and V2.0, which are composed 
of concurrently operating modules. The task of 
the storage system is to achieve this without 
breaking existing implementations, but also to 
offer simultaneous access to commonly shared 
data. Thirdly, the implementation benefits from 
the document oriented approach, because 
additional functionalities like concurrency 
handling, awareness services and access control 
can be integrated transparently and mainly reused 
within different versions. They are attached on the 
document level itself and not on the storage or the 
application specific implementation level. Both 
sides, the application as well as the data sources, 
are detached from the document extension layer 
by the introduced adapters. 

5. Conclusions and Outlook 

In this paper, we have presented a distributed 
storage system which is intended but not limited 
to support the specific document and storage 
requirements of web information systems. It can 
be extended dynamically with new functionalities 
using adapters without breaking existing 
implementations. We have briefly presented an 
example of an open distributed community 
system, where in conjunction with Java, every 
user can extend and adapt the available data 
sources and document formats to his or her 
specific needs, accessing commonly shared data 
in uniform way. 

There are several areas for future research. For 
example, after XML (Extensible Markup 
Language) and SOAP (Simple Object Access 
Protocol)  have emerged, we have started to work 
on dynamic adapters, which do not modify the 
interfaces like in AOP [5], but transform the data 
transmitted in a method call between two objects 
using SOAP. A related approach is proposed in 
[22], which introduces so called intermediaries to 
manipulate information streams and which are 
applied during runtime. Thus, in contrast to the 
conventional Adapter Pattern, the adaptation can 
be conducted even if no source code is available. 
This will be a step towards a freely customizable 
information space.  

In conjunction with XML, several concepts 
have been emerged about using and evaluating 

semantics in database systems [23]. The goal is to 
make data access more efficient by not only 
evaluating the content of resources, but also their 
meanings. We currently investigate how to 
provide database independent access to meta data, 
similar to the introduction of document adapters. 

Some additional work has already been started 
on using the storage system not only for server 
based information spaces, but also in widely 
distributed peer-to-peer networks. In this case, the 
challenge is to transform the internet from a low-
structured hyperlink system to a commonly shared 
knowledge repository, building the next internet 
generation. 

References 

[1] Catarci, T. Web-based Information Access. 
International Conference on Cooperative 
Information Systems. IEEE 1999. pp. 10-20. 

[2] Montebello, M. Wrapping WWW 
Information Sources. International 
Symposium on Database Engineering and 
Applications. IEEE 2000. pp. 431-436. 

[3] Seiter, L., Mezini, M., and Lieberherr, K. 
Dynamic Component Gluing in Java. Proc. 
of 1st Symposium on Generative and 
Component-Based Software Engineering 
(GCSE '99), LNCS. Springer 1999.  

[4] Mezini, M., Seiter, L., and K. Lieberherr. 
Component Integration with Pluggable 
Composite Adapters. Kluwer Academic 
Publications, 2000. 

[5] Kiczales, G., Lamping, J., Mendhekar, A., 
Maeda, C., Videira Lopes C., Loingtier, J.-
M., and Irwin, J. Aspect-Oriented 
Programming. Proc. of the European 
Conference on Object-Oriented 
Programming (ECOOP), Finland. Springer-
Verlag LNCS 1241. June 1997. 

[6] O'Grady, T. Flexible Data Sharing in a 
Groupware Toolkit. M.Sc. thesis, Dept. of 
Computer Science, University of Calgary, 
Calgary, Alberta, Canada. 1996.  

[7] Monson-Haefel, R. Enterprise JavaBeans. 
O'Reilly & Associates. 2000. 



 

 

[8] Goeschka, K.M., Falb, J., Radinger, W. 
Database Access with HTML and Java - A 
Comparison Based on Practical Experiences. 
Proc. on the 22nd Annual International 
Computer Software and Applications 
Conference (COMPSAC '98). IEEE 1998. 
pp. 588-593. 

[9] Bouguettaya, A., Benatallah, B., Hendra, L., 
Ouzzani, M., Beard, J. Supporting Dynamic 
Interactions Among Web-based Information 
Sources. IEEE Transactions on Knowledge 
and Data Engineering. IEEE 2000. pp. 779-
801.  

[10] Benatallah, B., Bouguettaya, A. Data 
Sharing on the Web. First International 
Workshop on Enterprise Distributed Object 
Computing Workshop. IEEE 1997. pp. 258-
269. 

[11] Wang, N., Chen, Y., Yu, B., and Wang, N. 
Versatile: A Scalable CORBA-based System 
for Integrating Distributed Data. 
International Conference on Intelligent 
Processing Systems. IEEE 1997. pp. 1589-
1593. 

[12] Petrou, C., Hadjiefthymiades, S., Martakos, 
D. An XML-based, 3-Tier Scheme for 
Integrating Heterogeneous Information 
Sources to the WWW. Proc. on the 10th 
Database and Expert Systems Applications 
(DEXA 99). IEEE 1999. pp. 706-710. 

[13] Kappel, G., Kapsammer, E., Rausch-Schott, 
R., and Retschitzegger. X-Ray - Towards 
Integrating XML and Relational Database 
Systems. Proc. of the 19th International 
Conference on Conceptual Modeling, 
(ER'2000). Salt Lake City, USA, October, 
2000. 

[14] Leontiev, Y., Ozsu, M. T., and Szafron, D. 
On Separation between Interface, 
Implementation, and Representation in 
Object DBMSs. Proc. of the Technology of 
Object-Oriented Languages and Systems, 
1998. pp. 155-167. 

[15] Dridi, F., Neumann, G. How to Implement 
Web-Based Groupware Systems Based on 
WebDav. Proc. of the 8th IEEE International 
Workshops on Enabling Technologies: 
Infrastructure for Collaborative Enterprises. 
IEEE 1998. pp. 114-119. 

[16] Härder, T., Loeser, H., Zhang, N. Supporting 
Adaptable Technical Information Systems in 
Heterogeneous Environments - Using 
WWW and ORDBMS -, in: Proc. 8th Int. 
Workshop on Database and Expert Systems 
Applications (DEXA'97), Toulouse, Sept. 
1997, pp. 295-303. 

[17] Hergula, K., Härder, T.: A Middleware 
Approach for Combining Heterogeneous 
Data Sources - Integration of Generic Query 
and Predefined Function Access, in: Proc. 
1st Int. Conf. on Web Information Systems 
Engineering (WISE 2000), Hongkong, June 
2000, pp. 22-29. 

[18] Gamma, E., Helm, R., Johnson, R., and 
Vlissides, J. Design Patterns - Elements of 
Reusable Object-Oriented Software. 
Addison-Wesley. 1995. 

[19] Tatsubori, M., and Chiba, S. Programming 
Support of Design Patterns with Compile-
Time Reflection. OOPSLA'98 Workshop on 
Reflective Programming in C++ and Java, 
pp.56-60, Vancouver, Canada, Oct 18, 1998. 

[20] Fleischmann, M., Strauss, W. 
Communication of Art and Technology 
(CAT). IMK/MARS, GMD St. Augustin. 
http://imk.gmd.de/images/mars/files/Band_1
_download.pdf  

[21] netzspannung.org, Communication Platform 
for Digital Art and Media Culture. 
http://netzspannung.org 

[22] Barrett, R., Maglio, P. P. Intermediaries: An 
Approach to Manipulating Information 
Streams. IBM Systems Journal, 38, 1999. 
pp. 629-641. 

[23] Morgenstern, M. Integrating Web and 
Database Information for Collaboration 
Through Explicit Metadata. Proc. of the 
Seventh International Workshop on Enabling 
Technologies: Infrastructure for 
Collaborative Enterprises. IEEE 1998. pp. 
204-210. 


	1. Introduction
	2. Web Information Systems
	3. A Distributed Storage System
	3.1 Levels of Data Abstractions
	3.2 Accessing Distributed Data in Heterogeneous Environments
	3.3 Uniform Storage Access
	3.4 Uniform Document Access
	3.5 Document-Oriented Approach

	4. Implementation Issues
	4.1 Overview
	4.2 Example

	5. Conclusions and Outlook
	References



