

The Exploratory Media Lab
MARS Media Arts & Research Studies

netzspannung.org
Wissensraum für digitale Kunst und Kultur

PAAL, Stefan
KAMMÜLLER, Reiner
FREISLEBEN, Bernd

Separating the Concerns of Distributed
Deployment and Dynamic Composition in
Internet Application Systems

Publiziert auf netzspannung.org:
http://netzspannung.org/about/technology/
24.06.2004

Erstveröffentlichung: Distributed Objects and Applications (DOA 2003).
LNCS 2888. Catania, Italy: Springer, 2003, S. 1292-1311.

Separating the Concerns of
Distributed Deployment and Dynamic Composition

in Internet Application Systems

Stefan Paal 1, Reiner Kammüller 2, Bernd Freisleben 3

1 Fraunhofer Institute for Media Communication
Schloss Birlinghoven, D-53754 Sankt Augustin, Germany

stefan.paal@imk.fraunhofer.de

2 Department of Electrical Engineering and Computer Science, University of Siegen
Hölderlinstr. 3, D-57068 Siegen, Germany

kammueller@pd.et-inf.uni-siegen.de

3 Department of Mathematics and Computer Science, University of Marburg
Hans-Meerwein-Strasse, D-35032 Marburg, Germany

freisleb@informatik.uni-marburg.de

Abstract. The Internet is currently evolving from a global information network
into a distributed application system. For example, some Internet applications
are based on executing remote services which have been previously installed on
possibly multiple Internet nodes, whereas parts of other Internet applications
are dynamically moved from several remote nodes to be executed on a single
node. In this paper, we focus on the related problem of how the parts of an
Internet application that have been independently deployed on multiple Internet
nodes can be transparently located, seamlessly retrieved and dynamically
composed on a particular node by request. We propose a novel deployment and
composition approach using so called modules and module federations and
show how to separate the logical application composition from the physical
module deployment. The realization of our proposal in Java and C++ is
presented and the use of the approach in ongoing research projects is
demonstrated.

1 Introduction

Originally, the Internet was supposed to interconnect spatially distributed
computing nodes and serve as a communication medium to exchange data among
them. However, during its evolution, the Internet slowly turned into an
interconnection medium that was used by some Internet applications to link Internet
nodes on the application level. Each Internet node hosting a web server became part
of a certain kind of service federation, namely the WWW, and users got the illusion
of a global information network in which all participating nodes are seamlessly linked
together and the web browser is a universal interface to this network [1]. With the
advent of web services [2] in recent years, Internet nodes offer customized services

which can be remotely accessed similar to web servers [3]. The invention of web
services also promoted new kinds of Internet application systems, so called
application servers, which are able to host custom Internet applications instead of
fixed applications. Moreover, today various Internet applications are distributed and
interact across multiple nodes, as in the case of the grid computing paradigm. From
this point of view, the Internet finally turned into a cross-platform application
environment and the Internet nodes have become part of distributed Internet
application systems [4, 5]. In the depicted contexts, Internet applications are typically
statically deployed and appropriately configured on each node by the site
administrator. However, it is neither always possible nor desired to deploy and setup
an application in advance on the node where it is to be executed. Thus, an application
is not longer installed on each node but rather deployed into an application repository.
From there, it is automatically downloaded onto the target node and appropriately
configured before the application is started, as e.g. in Sun Java Web Start [6] or Netx
[7]. In other scenarios, applications are not longer deployed in terms of a single
executable but are dynamically composed of smaller parts like libraries or
components, as e.g. in the case of Sun Enterprise Java Beans (EJB) [8]. Furthermore,
similar to orchestrating web services at runtime (which, however, typically remain on
the remote node) [9], an Internet application may also be flexibly composed by
downloading services from different providers dynamically to perform additional
tasks on a single node as in the case of Jtrix [10]. Finally, already running
applications may want to travel across various nodes (such as software agents) or they
have to migrate from one host to another. While migration itself already raises many
questions regarding saving and restoring object states and application contexts, a
major problem is code mobility in terms of deploying, configuring and composing an
application [11].

To summarize, there are scenarios where Internet applications have to be arbitrarily
deployed and executed across various Internet nodes. This leads to a particular need
for dynamically locating, retrieving and installing an application from and on certain
nodes by request. Moreover, an application itself may be composed of smaller parts,
which also touches a major problem in component-based software engineering
(CBSE), namely the negotiation and gluing of unknown and originally incompatible
components [12]. However, while this indeed is an important issue in an open world
scenario, we think that Internet applications are not typically composed of unknown
and inherently insecure code fragments but rather of familiar and trustable elements.
Thus, in the following we explicitly assume that the composition of related Internet
applications is characterized by selecting an appropriate component out of a group of
compatible components and not by gluing possible incompatible components.
Therefore, the focus of the approach presented in this paper is the clear separation of
component deployment, platform configuration and application composition. We
propose a novel deployment and composition approach using so called modules and
show how they can be used to separate the deployment configuration of the current
Internet node from the composition configuration of the Internet application. Along
with that we introduce remote module repositories and organize them in so called
module federations which enable to transparently deploy and query modules in a
distributed application system and to dynamically retrieve them from various remote
nodes by request.

The paper is organized as follows. In section 2, we discuss the features and
requirements of distributed Internet application systems regarding deployment and
composition issues and consider existing solutions. Section 3 presents our approach to
separating the deployment and composition configuration and illustrates its realization
in Java and C++. The application of the approach is demonstrated in section 4.
Finally, section 5 concludes the paper and outlines areas for further research.

2 Distributed Internet Application Systems

In this section, we address two of the fundamental problems concerning code
mobility, namely deployment and composition of Internet applications.

2.1 Deployment

A basic task of software development is the deployment of an application. In a single
managed runtime environment an application can be deployed in a simple manner, but
in a distributed Internet application system with multiple involved and independently
managed nodes the deployment task is more complex. In this context, we define a
module as a deployable unit which may contain different code resources and can be
separately distributed. The following issues have to be addressed with respect to
deployment in distributed Internet application systems.

Managing Different Variants. A module typically exists in different variants, e.g.
debug or release version, single-thread or multi-thread capability and so on. We
assume that an appropriate module variant is selected matching given attributes.
Furthermore, it is likely in a distributed Internet application system that every variant
is retrieved concurrently by possibly different nodes. Consequently, a basic feature is
the deployment of the same module in different variants and its simultaneous use and
provision.

Distributed Deployment. An application on a standalone platform can only retrieve
locally deployed modules which typically do not vanish. In contrast, an Internet
application has to retrieve modules from remote module repositories which may
disappear by chance or turn inaccessible due to network errors or shutdowns. Thus, a
module has to be distributable across different module repositories from where it can
be transparently retrieved and dynamically deployed on the requesting node without
the explicit involvement of the user.

Distributed Updates. Another issue is the evolution of applications and their
constituent modules. While a missing module can be easily detected by the requesting
Internet application system, it is usually not possible to determine whether somewhere
a newer variant is available without issuing a query. Hence, collaborating module
repositories should be automatically updated after a new variant has been released.

2.2 Composition

Another basic concern is composition which is typically tightly coupled with
deployment. While deployment has to deal with the separation of an application,
composition is about assembling an application. It is usually performed during
runtime and relies on the deployed modules. The following issues must be considered
regarding composition in distributed Internet application systems.

Separation of Deployment and Composition. A major advantage of composable
applications is their ability to arrange the real composition after the actual
development has been finished. A particular problem of composition within
distributed Internet application systems is the diversity and permanent change of
component deployment due to the large range of changing system and network
constellations. Thus, the composition process should be configurable independent of
the current deployment scenario and the hosting Internet node.

Dynamic Composition. While the location of deployed modules on a single Internet
node can be easily tracked and resolved, this is not always possible when each module
has been deployed on a different Internet node. The related issue is about how
modules can be transparently queried and retrieved. Furthermore, after an appropriate
module has been located it has to be dynamically retrieved, which may happen in
different ways. However, the application should be able to transparently request and
access each module in the same way independent of its location.

Multi-Composition System. As mentioned in the introduction, application servers
are supposed to host more than one application concurrently. In this scenario,
different applications may refer to the same modules. Thus, the composition process
has to support multi-composition, sharing the same modules and components with
several applications. In turn, there are modules which have to be used exclusively by
each application, e.g. because of security reasons. Consequently, the composition
process should be customizable with respect to sharing and shielding components.

2.3 Related Work

After having highlighted the special concerns of deployment and composition in
distributed Internet application systems, in the following we examine various
approaches along with related work regarding these issues.

Native Runtime Environments. As mentioned above, deployment is an essential
part of application installation and subsequent dynamic composition. For example,
Microsoft Windows dynamically deploys components using Dynamic Link Libraries
(DLL) and UNIX derivates like Linux use Shared Libraries, respectively. While they
allow encapsulating various components, they have to be packaged in particular files
and typically installed in certain paths. Consequently, they require applications to
know the physical location of the DLL or the shared library, as illustrated in fig. 1.

HINSTANCE hInst = LoadLibrary("c:\sdk\components.dll");

Fig. 1. Loading a dynamic link library in MS Windows

Apart from using unique filenames, there is no native versioning support in MS
Windows, since the loader distinguishes DLLs by their module names and prevents to
load another DLL using the identical module name into the same address space.
Moreover, the application can not inspect or query for DLLs matching certain
properties without loading them first into memory. And even then, only the basic
information can be reviewed, such as module name or particular function entry points.
There is no support for revealing the contained components or other resources, simply
because DLLs are not primarily intended to carry queryable components but library
functions which can be addressed by their well-known name, as shown in fig. 2 for
MyFunc.

typedef bool (*MYFUNC)(void*);
MYFUNC mf = (MYFUNC) GetProcAddress(hInst, "MyFunc");

Fig. 2. Retrieving a library function from a MS Windows DLL

Regarding lookup and loading, the native library loader can only retrieve libraries
which have been deployed on the local machine. There is typically no support to
query remote module repositories for requested libraries. On the other hand, MS
Windows DLLs and UNIX shared libraries can be easily deployed by simply copying
them into the appropriate directory where the loader is looking for them by file name.
As a result, the native development and runtime support for dynamic deployment and
composition of components is limited by the constraints mentioned above. Instead,
developers have created workarounds like well-known plugin directories to look for
components or special configuration files where the location and properties of
components can be queried. But these are proprietary approaches and can not be
easily ported to other application scenarios.

Virtual Runtime Environments. Besides native runtime environments which are
inherently bound to certain operating systems like MS Windows or Linux, there are
virtual runtime environments used in Sun Java or MS .NET [13, 14]. They are
particular suited for Internet applications in that they enable the same application
executable to be run on different platforms without re-compilation. Regarding
dynamic deployment and composition in Java, it differs from the native approach
used for C programs in MS Windows and Linux. The fundamental difference is the
granularity of loading components. While components of C programs have to be
encapsulated in a DLL or a shared library and can only be retrieved together, Java
classes can be separately loaded from Java Archives provided that the archives and
classes are configured in the CLASSPATH, as shown in fig. 3 for the class
mypack.MyClass.

Class c = Class.forName("mypack.MyClass");
mypack.MyClass o = (mypack.MyClass) c.newInstance();

Fig. 3. Loading a single class in Java

A variant is the use of a custom class loader which mainly extends the way how
classes are located and loaded but not how they are selected, e.g. by given version or
vendor properties [15]. Another approach is MS .NET whose dynamic deployment
and composition capabilities heavily rely on so called assemblies. They represent an
improvement over DLLs in that they contain additional metadata and a manifest file
which specify further details of the assembly like version number, vendor etc. While
the versioning information is evaluated by the assembly resolver only for shared
assemblies stored in a global directory, private assemblies are exclusively used by one
application and are stored in the path of the application installation directory. Similar
to a DLL, an assembly can be easily loaded during runtime, as shown in fig. 4 for
myassembly.dll. Via the static method Load of the class Assembly an
assembly is dynamically loaded and assigned to the application. The example in fig. 4
also illustrates the use of reflection with GetTypes to inspect the content of the
assembly.

Assembly a = Assembly.Load("myassembly.dll");
Type[] types = a.GetTypes();

Fig. 4. Loading an assembly in MS .NET

While virtual runtime environments represent an abstract execution layer on top of
the actual platform environment, they still rely on the underlying deployment
constraints, such as system environment settings in Java or a well-known directory as
in MS .NET. Thus, they are not designed to support distributed deployment and
composition scenarios across several and differently configured platforms.

Frameworks. Native and virtual runtime environments are often extended with
particular frameworks which add special features regarding dynamic composition,
whereas deployment is rarely supported further [16]. Well-known examples with
particular composition support are Sun EJB, CORBA Components, or Apache Avalon
[8, 17, 18]. They introduce component models which allow composing applications
from independently developed components for different purposes but still rely on the
inherent deployment scheme of the underlying runtime environment. Thus, regarding
distributed Internet application systems, they are supposed to be primarily used on a
single platform and are not designed for cross-platform application environments.
However, there is also support for special deployment features in selected application
scenarios. As an example, web applications can be easily deployed using so called
Web Archives [19]. The corresponding Java Servlet Engine dynamically configures an
appropriate application environment and instantiates the web application. But once
deployed, the web application will not be updated if a newer version replaces the
former archive. Furthermore, the web archive approach is only applicable when the
entire application can be packaged within a single file but not if it is to be composed
and completed with other, external components. Another example is Sun Java Web
Start [6]; it eases the deployment of Java Applets in that it organizes downloaded Java
archives on the client side in a locally managed cache. Each time an applet is to be
started, Java Web Start compares the cached version with the server version and
downloads the applet only if there is a newer version on the server. However, it relies
on Java archives and thus it inherits the same problems as mentioned above.

Moreover, while it is a good starting point for distributed Internet application systems,
it is not able to directly communicate with JAR repositories but by downloading and
evaluating a Java Native Launch Protocol (JNLP) configuration file from a web
server. And it does also not allow a customer to dynamically change the provided
configuration of a JNLP application. Finally, there are related frameworks and
approaches dealing with composition by refactoring legacy code using Aspect-
Oriented Programming (AOP). However, their objectives are different in that they
focus on increasing the modularity and configurability of legacy code by using AOP
to single out orthogonal features and compose them into aspects [20]. Moreover, due
to AOP which is typically applied during compile time, these frameworks are often
limited regarding distributed deployment and dynamic composition configuration
during runtime.

Application Servers. While a framework typically extends a native application
runtime and/or development environment with special features and is usually
deployed along with the application itself, this is not feasible for all kinds of
extensions. As an example, for concurrently managing multi-applications like web
applications or web services a so called application server is needed. It is started
before the actual applications are loaded and then launches each application and
service as part of the same process. Related applications are developed using a certain
application model and can be solely executed in the target application environment
provided by the application server; examples are Jtrix, Apache Avalon, Jakarta
Tomcat, Sun ONE, JBOSS [10, 18, 19, 21, 22]. While the application server approach
is feasible for managing multiple applications and an enhanced runtime environment,
it is typically still limited to a single platform architecture and a certain application
model. Moreover, due to their orientation towards well-defined server-side scenarios
with fixed system configurations, application server approaches have not been
designed to be configured on the fly for the dynamic composition of new applications
or services. Thus, the composition process is limited to components previously
installed and known on the target platform and can not dynamically include custom
modules provided by remote users on other Internet nodes. An interesting approach in
this direction is provided by Jtrix which is not fixed to a single host but targets code
mobility across multiple platforms. It propagates so called netlets which represent a
certain kind of Java service. They can be dynamically retrieved from a remote
repository and instantiated on the current platform as well as migrated and spread
across different nodes. In this sense, Jtrix represents a particular cross-node
application server with respect to nomadic services but therefore it only supports
service-based deployment and composition, respectively.

In summary, there are particular requirements regarding deployment and
composition in distributed Internet application systems. Although there are existing
approaches and solutions which address some of them, deployment and composition
are basically supposed to be employed in a single Internet application system, in
particular application scenarios or fixed system configurations, respectively. Thus,
they lack basic support for transparent retrieval of locally and remotely managed
components, sharing and shielding of loaded components and distributed
synchronization of deployed components.

3 Module Federations

In the following, our approach to deployment and composition using so called
modules and module federations is presented along with its features and its realization
in Java and C++.

3.1 Conceptual Approach

According to the requirements of distributed Internet application systems described
above, first of all the logical composition of application systems should be separated
from the physical deployment aspects of the involved Internet platforms. For this
purpose, we introduce so called modules which are special assemblies of components
and represent virtual deployable units with well-known resources, unique module ids
and property tags. They can be logically retrieved and transparently resolved across
different physical deployment scenarios given the module id. Internet applications do
not longer work directly with the deployed units of the native approach, e.g. Java
archives or MS Windows DLL, but they refer to modules for their composition
requests. From this point of view, modules enable the separately configurable virtual
deployment on top of the physical deployment, as illustrated in fig. 5.

Fig. 5. Physical Deployment, Virtual Deployment and Logical Composition using Modules

A module is acting as a mediator between the physical deployment units and the
logical components. It shields the application system and its composition requests
from the currently underlying host platform and its configuration scenario. In contrast
to native libraries and other deployment units, modules are managed within so called
module repositories which do not have to be located on the same platform but can be
remotely found, queried and managed, as shown in fig 6. A module controller on
platform AS handles the module loading requests received from the hosted

applications and transparently retrieves the module from a possible remote module
repository. This is particularly suitable for distributed and decentrally organized
system configurations like peer-to-peer networks or mobile scenarios.

Fig. 6. Module repositories and module federation

Moreover, module repositories can be organized in so called module federations
for sharing and synchronizing modules across distributed Internet platforms, as also
shown in fig. 6. While there are various options to manage a federation, its nodes and
the distributed resources [23], our approach does neither rely on a particular
organization nor communication protocol as long as there is an appropriate plugin to
enable the module controller to interact with the federation or a single repository and
shield the logical application composition from the physical module deployment. As
an example, the discovery of available module repositories could be managed by
manually edited local configuration files, well-known directory services or peer-to-
peer approaches. Some repositories may provide network access to their modules over
HTTP whereas others may use web services and SOAP. Furthermore, the localization
of a module can be performed by querying each module repository one-by-one or by a
lookup in a central directory service based on LDAP where each module has been
registered previously. In effect, the federation hides the physical deployment of
modules across various remote nodes, and once a module has been deployed into the
federation, each Internet application system can transparently query and retrieve this
module. From this point of view, a module federation represents a group of well-
known, trusted and collaborative module repositories which finally behave like a
single virtual module repository. Due to the introduction of modules which act as
mediators between deployment constraints of the involved platforms and composition
constraints of the concerned application systems, the approach is especially suitable
for flexible application systems and variable platform scenarios. It is not bound to a
certain programming language feature or operating system and is open to package

different kinds of components like classes, binary resources or programming libraries
and to dynamically deploy them into module repositories by request.

3.2 Features

The main features and benefits of the proposed conceptual approach regarding
deployment and composition in distributed Internet application systems are as
follows.

Custom Component Packaging. An important issue concerning component
deployment is the custom packaging into deployable units. While the native
deployment items like DLLs or Java archives originally lack support for registering,
describing and retrieving single components, a module provides options to arbitrarily
manage and assemble components within a deployment unit.

Queryable Description. While deployment units are typically addressed using
absolute filenames or well-known identifiers, there are often different variants which
can only be selected by evaluating custom properties like e.g. versioning information.
Thus, remote module repositories can be queried for appropriate modules and
components without actually downloading the module.

Transparent Handling of Variants and Dependencies. A component is often used
in conjunction with other components. The result is a dependency graph between
components and deployment units, often across different variants. Our approach hides
the dependency handling from the application in that it provides a uniform way to
retrieve modules and contained resources without bothering the developer to
manually resolve possible module dependencies.

Distributed Module Repositories. A frequent constraint of current Internet
application systems is their limitation to be composable only of locally deployed
components. Our approach uses module repositories which can be locally or remotely
found and supports the transparent sharing of a deployed module. Thus, a developer
does not have to update every involved Internet application system but must only
deploy the module once into a single module repository.

Dynamic Deployment and Composition. In native application scenarios,
deployment units like Java archives or MS Windows DLLs have to be deployed by
the site administrator before the application can be started. In contrast, our modules
can be dynamically deployed into a module repository and retrieved by each
application in the module federation without customizing the current host platform.

Module Handler. Native deployment units have only limited support for managing
the unit during runtime. For example, there is basically no central initialization of the
Java archive when a contained Java class or component is accessed the first time. Our

approach comes with a module handler which provides a uniform API for accessing
the contained resources and tracks their usage.

Shared and Shielded Module Instances. A single application system can easily
track down which modules have already been loaded and will not load the same
module more than once. On the other hand, Internet application systems are often
dealing with concurrently loaded services. We ensure that shared modules are only
loaded and instantiated once. Subsequent requests return the same module instance
and allow the reuse of resources across concurrently hosted applications.

3.3 Realization

As mentioned above, our conceptual approach is neither bound to a certain
programming language feature nor operating system. Thus, in the following we
describe the realization of the approach in an exemplary fashion for Java and C++ for
MS Windows. We will primarily focus on how to work with modules regarding
development, deployment, composition and configuration issues. The tasks of how to
implement and synchronize a federation are not covered in detail since they have been
already addressed in other works [23]. In fact, the interaction with the module
federation and the participating nodes is actually performed by module controller
plugins which hide the details of discovering module repositories, querying modules
and downloading them onto the requesting Internet node.

Java Implementation. In contrast to MS Windows or Linux runtime environments,
the Java Virtual Machine (JVM) does not couple a physical deployable unit one-by-
one with logical composable entities. Each Java class within a deployed Java archive
can be independently retrieved and used for composition without addressing the other
classes in the same archive. However, this is not valid for MS Windows DLLs or
shared libraries of Linux which have to be completely loaded for retrieving a
contained component. Thus, the basic question for realizing the approach in Java is
how to define the required classes of a Java module when there is no option to group
classes logically but only physically. We have addressed this problem in previous
work by introducing so called class collections [24], as shown in fig. 7.

<collection name="sun-jaf" id="sun-jaf">
 <variant> <property name="release" value="1.0.1"/>
 <file location="/sdk/sun-jaf-1.0.1/activation.jar">
 <package name="com/sun/activation/.*"/>
 <package name="javax/activation/.*"/> </file>
 </variant> </collection>

Fig. 7. Grouping Java classes using class collections

Each collection definition contains a unique id that can be used to refer to this
collection like sun-jaf in fig. 7. The subsection can then define different variants of
the collection with various properties which are later also used to select a particular
variant among several variants. Finally, the location of the JAR file where the

contained classes can be found is given in conjunction with class name patterns that
specify which classes can be loaded from the JAR files. To evaluate the collection
configuration, the system class loader of the JVM is replaced by a custom class loader
which checks each class loading request and determines the right class according to
the configuration file. The module configuration in turn uses class collections to
specify the required classes when the module is about to be used, as shown in fig. 8.

<module name="texteditor" id="{A9D52EF1}"
 handler="de.fraunhofer.texteditor.CModule">
 <property property name="vendor" value="Fraunhofer" />
 <dependency>
 <module id="{2E6210AA}"/><module id="{D181334A}"/>
 </dependency> <collection id="texteditor">
 <property name="release" value="1.0.0" />
 </collection> <collection id="apache-xerces">
 <property name="release" value="2.4.0" />
 </collection> </module>

Fig. 8. Module deployment using class collections

The module texteditor is marked with a globally unique identifier (GUID)
and defined to use a collection texteditor and apache-xerces with the given
properties. As a result, the module configuration does not longer rely on Java archives
or has to specify exactly which classes are needed. Instead, the class collections shield
the composition of the module from the actual deployment of the required classes.
The attribute handler points to a class which represents the module handler of the
current module, e.g. performing the initialization or providing access to its resources.
Furthermore, the module may also define properties like vendor which can be used
to query this module. Finally, the dependency section indicates which modules
have to be loaded by the module controller before the current module can be used.

After the physical deployment of modules, we have to define the logical
composition, configuration and management of loaded modules. What will happen
when the same module is requested in two different variants by two applications
hosted within the same JVM? Or how can an application determine whether the
module to be retrieved is already loaded and initialized or not? The first question is
targeting a basic problem of the original class loader approach of Java which does not
allow loading two classes having the same fully-qualified class name (FQCN) by the
same class loader [25]. Thus, in order to support the composition of modules in
different variants within the same JVM, we have to use and manage several class
loaders. This problem has been also addressed by our previous work introducing so
called class spaces [26]. They enable developers and administrators of Internet
application systems to configure exactly which Java classes and class collections are
shared across or shielded from other concurrently loaded applications. The class space
approach is used as the basis to specify which modules are shared and which are
shielded by introducing so called module spaces as shown in fig 9. There is one
module space shared and two child module spaces shielded-1 and
shielded-2. While the module space shared is configured to load two modules

which are shared across shared, shielded-1 and shielded-2, the latter two
are organized to hold only one module which is not seen by any other module space.

<modulespaces> <space id="shared" parent="application">
 <module id="{36242453}"/> <module id="{BE441538}"/>
 </space>
 <space id="shielded-1" parent="shared">
 <module id="{A9D52EF1}"/>
 <property name="vendor" value="FhG" /> </module>
 </space>
 <space id="shielded-2" parent="shared">
 <module id="{2EBF97FD}" /> </space>
 </modulespaces/>

Fig. 9. Module sharing and shielding using module spaces

In case a shared module is to be requested a second time, it is not loaded again but
its reference is returned to the caller without initializing the module twice. In general,
the module spaces are organized in a hierarchical structure where modules in a child
module space can only share the modules on the path to the root space. In turn, the
modules located in other module spaces are shielded. In effect, our module
management completely hides the issues of lookup, loading and initializing modules
from the application, as depicted in fig 10. The application can simply request a
module by specifying the related module id modId1 and will get a reference to it.

CModuleId modId1 = new CModuleId("{657B3CA5 }");
IModule mod1 = getModuleManager().openModule(modId1);

Fig. 10. Requesting a module in Java

The module requestor can also pass additional parameters describing the desired
module like a property list, or the related module space is accordingly configured with
properties like e.g. vendor, as already shown in fig. 9. The module resolver plugin
evaluates these additional parameters before loading the module and tries to resolve
an appropriate module. However, there are also other resolving approaches, such as
semantic trading as used in [27], which evaluate particular aspects like module
behavior and the current composition context. For this purpose, additional resolver
plugins can be included in our approach that model the related resolving scheme.

 After the module has been successfully loaded, it will be initialized using the
method init within the module handler object. This method is called only once and
can be used to setup the module, e.g. register contained resources or request other
required modules like mod2 as shown in fig. 11. In turn, when the last user of the
module has released its reference, a corresponding method exit is called which can
be used to release acquired modules or to cleanup other resources.

public void init() {
 registerResource("{B5C91A0B}", new CMyResource());
 IModule mod2 = openModule("{CDACCCD7}"); }

Fig. 11. Initializing a module

The next step for the module requestor is to access the contained resources and
components. For this purpose, each module exposes a particular module handler
interface which can be used to query a module for well-known resources by unique
identifiers. As already described above, we do not want to address the dynamic
negotiation, adaptation and gluing of arbitrary components, e.g. by using contracts to
describe the interface semantics [28]. Rather, we want to support the transparent
deployment and composition of already collaborative and suitable components which
are distributed and managed on remote Internet platforms. Thus, if a requested
module has been found and loaded, there is no longer the question whether and how
the contained components will fit but only how to get a reference and to access them,
as shown in fig. 12. A component within the module is requested by
openResource given the corresponding resource id which has also been previously
used to register the resource and as depicted above.

IResource res = mod1.openResource("{B5C91A0B}");

Fig. 12. Accessing a certain resource within a module

Finally, the module approach has been implemented in Java in conjunction with
class collections and class spaces [26]. It offers developers of components,
configurators of applications and administrators of Internet platforms a unique way to
separately define physical deployment, logical composition and configuration of Java
components. Along with the distributed management of modules within module
federations it represents a transparent foundation of composable distributed Internet
application systems written in Java.

C++ Implementation. Applications compiled into platform-dependent executables as
in the case of C++ programs can not be directly transferred to arbitrary platforms like
with Java. At least the source code must be compiled for different platform
architectures, although the basic programming strategy may remain the same.
Therefore, while we limit the discussion in the following to the realization with C++
and MS Windows, our approach has also been implemented for Linux environments
in a similar way. In MS Windows, the deployment strategy of dynamically loadable
components mainly relies on DLLs which can be independently deployed and easily
incorporated into an application. Basically, there are two ways. The first
automatically retrieves the DLL before an application is loaded. If the DLL can not be
located and loaded, the application is not started. Using DLLs in this way is the
simplest option for developers because there is no need to change the program code
compared to linking an application against static libraries. However, the administrator
of the hosting Internet platform or the application itself can not adjust the resolution
strategy or loading process. The required DLL must be in the path of the application,
otherwise the DLL loader will not be able to find the DLL. The second way is more
dynamic. The application itself can request a certain DLL during runtime and
dynamically specify an arbitrary file location as long as the DLL is stored somewhere
on a mounted file system. In contrast to a Java archive, a DLL represents more or less
a closed deployment unit. It does not allow inspecting or retrieving parts of it as in the
case of loading a single Java class out of a Java archive. Everything contained in the
DLL will be always deployed and retrieved completely in an all or nothing fashion.

However, this also greatly supports the packaging of a module within a DLL. As an
example, fig. 13 shows a configuration file used by a module repository which defines
a module that is tagged with the property vendor. There is no need for an additional
class collection configuration file as in the case of Java archives. But similarly,
instead of relying on the physical deployment unit DLL and its possible varying
location on different platforms, an application can virtually request modules by
issuing an openModule to the module controller with the related module id. The
module controller will then load the configured DLL and initialize the contained
module similar to the Java implementation showed above.

<module id="{A9D52EF1}">
 <property name="vendor" value="Fraunhofer"/>
 <dll id="teditor" loc="http://crossware.org/teditor"/>
</module>

Fig. 13. Module deployment using MS Windows DLLs

In addition, we again use module spaces like in the Java implementation and are
able to define shared and shielded modules similar to the discussion above. After all,
a module has to be initialized when it is loaded the first time. In contrast to Java, there
are several ways how modules can be used in MS Windows applications. They may
be part of a static library linked with the application, they are implicitly loaded with a
DLL when the application is started or they are explicitly loaded by an application on
request. Either way, an Internet application system with different loaded applications
has to ensure that each module is only loaded and initialized once. But in contrast to
Java, there is a problem referencing a particular class out of a DLL. There is no way
to get access to single classes but only to exported functions, as described above in
fig. 2. However, the module management must know which modules are contained
within the DLL and how to get a reference to them. To solve this problem, each
module is automatically registered to the module controller when the DLL is loaded.
For static libraries, static methods are used to do that when the application is started.
For implicitly and explicitly loaded DLLs, the corresponding DLL initialization
function DLLMain is used to register all contained modules, as shown in fig. 14.

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD
fdwReason, LPVOID lpvReserved){
 m1=GetModuleManager()->RegisterModule(&Tools::Module);
 m2=GetModuleManager()->RegisterModule(&Edit::Module);}

Fig. 14. Registering of modules packaged within the same DLL

In effect, each module is registered and only initialized once in a similar way to the
Java realization. The differences between modules contained in static libraries,
implicitly or explicitly loaded DLLs are hidden from the caller and therefore a
common API can be used to request a module, as shown in fig. 15.

CModuleId modId1 = new CModuleId("{AA9C391B}");
IModule mod1 = GetModuleManager ()->OpenModule(modId1);

Fig. 15. Requesting a module in C++

After getting a reference to the module controller, the desired module is requested
by OpenModule passing the related module id modId1 or eventually further
parameters which may be evaluated by certain module resolver plugins as already
described for the Java implementation. Whenever the module controller is called to
retrieve a module, it transparently loads and initializes the module and returns a
reference to it. In case the module has been previously loaded, it directly returns the
related object reference. This way, if a module originally requested by the application
needs also other modules, they are resolved without explicit intervention of the
application. The module manager also pays attention that the same module is not
loaded twice within the same module space and that it is not initialized repeatedly.

3.4 Discussion

The presented proposal has been implemented using Java and C++ with MS Windows
and Linux, having had in mind to introduce a common, platform- and programming
language independent approach to distributed software deployment and dynamic
application composition. As a result, the actual underlying deployment and
composition strategy is completely hidden and its configuration is separated. Modules
containing components and other deployed resources can be transparently retrieved
and are automatically instantiated. In contrast to native, deployment dependent
composition approaches like MS Windows DLLs or Java archives, the developer can
focus on the business logic and dynamically request a certain component or resource
without considering how and where the resources have been actually packaged and
deployed. In effect, the tasks of composition and deployment are cleanly separated
among developers and deployers of modules and administrators of an Internet
application system, respectively. With respect to existing source code, the approach
can be seamlessly added and used without introducing a particular packaging or
deployment strategy as in the case of Java servlets or a heavy-weight composition
framework like Sun Enterprise Java Beans (EJB). Instead, it is built upon native
packaging approaches like Java archives and MS Windows DLLs in conjunction with
particular module loaders and configuration files that can be extended to support
different resolving schemes. In addition, it requires only small changes of the source
code of how components are retrieved and accessed. Furthermore, the presented
approach allows customers to logically compose an application on their own and is
not limited to existing native deployment units like Java archives and predefined
composition configuration as in the case of JNLP-based approaches. Another
important point is runtime performance. In comparison to native approaches like the
original Java classloader or DLL loader of MS Windows, the realizations in Java and
C++ reveal overhead only for the localization of an appropriate module matching the
module request and loading it from a possibly remote module repository. This
depends heavily on the actual application scenario and represents the cost for a highly
configurable and distributed component deployment. However, the loading time can
be reduced by installing a local module repository which is caching retrieved modules
or is automatically synchronized by the module federation. Finally, the actual access
on a component within an already loaded module and subsequent composition remain
as fast as with the original approach.

4 Application of the Approach

In the following, we depict the application of our approach on cross-platform
computing [29] where several Internet nodes are grouped to create a multi-platform
application environment. Each node is capable to host an arbitrary application which
in turn is dynamically composed of components deployed by various developers
within a so called platform federation. We use this concept in the ongoing research
project CAT [30] for the development of the Java-based open community platform
netzspannung.org. Each member of the platform is encouraged to develop new
components for the system and to offer them to other members by deploying the
related modules into provided distributed module repositories as shown in fig. 16.

Fig. 16. Dynamic deployment and composition in netzspannung.org

A developer who wants to add a new component to the system first has to add a
module handler to his/her project and implement the init method as described in
section 3.3. There, (s)he registers and initializes all components, resources and objects
to be accessible using the module handler. Next, after having packaged all related
Java classes in JAR files, (s)he runs a provided tool collection to automatically
create a collection configuration file of the related JAR files indicating the concrete
classes that can be found in there. In this file (s)he also adds configuration lines to
specify which third-party Java classes are also needed. Then, (s)he manually creates a
module configuration file listing the class of the module handler, constraints of the
module and the required class collections, as shown in fig. 8. Finally, the developer
uses a helper tool mddeploy to upload the JAR files, the collection and module
configuration files to a participating module repository. As a result, the configuration
files can be used to inspect the module as well as the constraints of the underlying
JAR files without actually downloading them from the repository, as described in

section 3.3 and in [26]. In case a module represents a new application to be published
on netzspannung.org, it must be registered with its module id in the application list of
the site configuration by the administrator. Consequently, when the application is to
be started, the corresponding module id is taken from the application list and the
platform module controller is querying the module repositories for the related module.
It automatically resolves the specified dependencies, downloads the module code and
uses the information in the module configuration to find the class of the module
handler for initialization. Finally, the module is initialized and in turn can request
further required modules. This way, each module is loaded one-by-one and the
application finally gets composed without knowing from where and how the modules
are retrieved. In effect, a customer is able to start each application on the platform and
gets the illusion that everything has been deployed on a single host instead of
different nodes. Based on the netzspannung.org platform (which is operational since
about two years) and its module repositories we are currently conducting a further
research project called AWAKE [31] which deals with knowledge management via
the Internet. Besides particular server-side components, an important part is the client-
side user interface for accessing the knowledge space of AWAKE and working with
different views. For that, we developed a so called Internet Application Workbench
which provides a desktop-like GUI and works with modules retrieved from remote
module repositories similar to the netzspannung.org platform. However, the
underlying module framework is not pre-installed but dynamically established on the
client-side using Sun Java Web Start. But in contrast to pure JNLP-based approaches
like Object Component Desktop [32], the actual subsequent composition of an
application is not performed using a JNLP file, but can be individually customized by
the customer choosing modules from different providers and module repositories.

5 Conclusions

In this paper, we have investigated distributed Internet application systems with
respect to their functional requirements to deployment and composition. We have
argued that existing solutions lack transparent support for distributed deployment and
dynamic composition of remotely located and managed components. Consequently,
we have presented a novel solution for solving these problems by introducing so
called modules and module federations. Their realizations in Java and C++ for MS
Windows were described, and the suitability of our proposal was demonstrated by
presenting its application in ongoing research projects. As a result of our approach,
different deployment scenarios are hidden from the application and can be easily
tackled during runtime using particular composition and deployment configuration
files. In effect, the Internet is turned into a distributed Internet application system
where each node can be equally used to host applications which are dynamically
composed of remotely managed components. Although we are already using the
approach in different projects and public installations like netzspannung.org, we are
still investigating how to extend existing and include new features. A basic problem
of the current deployment strategy is the lack of authentication when a new member is
registering to become part of a module federation. Currently, each module repository

must be configured to trust the new module repository and its managed modules. The
same is valid for a new developer who wants to deploy a module on a new module
repository. Another issue concerns access and composition control and whether a
particular component can be used or combined with other components in a certain
Internet application system. In this context, the presented approach could be also
employed to open a new business model for software leasing, which could be called
feature leasing of composable applications. Depending on the leasing contract, a
customer may be able to use only selected features, and the application is only
composed with the requested functionalities. Moreover, thinking of client side
applications whose components have been downloaded over the Internet, updated
components may be only retrieved and installed after upgrading the leasing contract.
The resolution of modules is currently performed by resolver plugins matching
property lists. However, we are already working on the implementation of plugins for
more flexible semantic-based module trading. Finally, the concept of the presented
approach is not limited to Java or Linux. Basically, it could also be used to realize a
similar module strategy for MS .NET. However, as long as MS .NET is not available
for a platform type different than MS Windows, its application is limited and typically
not feasible in a heterogeneous network environment like the Internet.

6 Acknowledgements

The presented approach has been applied in the ongoing research projects CAT and
AWAKE which are financially supported by the German Ministry of Education and
Research (BMBF). The projects are conducted by the research group MARS of the
Fraunhofer Institute for Media Communication, Sankt Augustin in cooperation with
the University of Siegen and the University of Marburg, Germany. Special thanks go
to Monika Fleischmann, Wolfgang Strauss, Jasminko Novak and Daniel Pfuhl.

References

1. Schatz, B. R. The Interspace: Concept Navigation Across Distributed Communities. IEEE
Computer. Vol. 35, Nr. 1. pp. 54-62. IEEE 2002.

2. Vaughan-Nichols, S. J. Web Services: Beyond the Hype. IEEE Computer. Vol. 6, Nr. 2. pp.
18-21. IEEE 2002.

3. Vinoski, S. Web Services Interaction Models - Putting the “Web” into Web Services. IEEE
Internet Computing. Vol. 6, Nr. 4. pp. 90-92. IEEE 2002.

4. Milenkovic, M., Robinson, S. H., Knauerhase, R. C., Barkai, D., Garg, S., Tewari, V.,
Anderson, T. A., Bouwman, M. Toward Internet Distributed Computing. IEEE Computer.
Vol. 7, Nr. 5. pp. 38-46. IEEE 2003.

5. Lawton, G. Distributed Net Applications Create Virtual Supercomputers. IEEE Computer.
Vol. 33, Nr. 6. pp. 16-20. IEEE 2000.

6. Srinivas, R. N. Java Web Start to the Rescue. JavaWorld. IDG 2001. Nr. 7.
http://www.javaworld.com/javaworld/jw-07-2001/jw-0706-webstart_p.html

7. Netx. http://jnlp.sourceforge.net/netx
8. Monson-Haefel, R. Enterprise Java Beans. O'Reilly & Associates. 2000.

9. Vinoski, S. Web Services Interaction Models - Current Practice. Internet Computing. Vol. 6,
Nr. 3. pp. 89-91. IEEE 2002.

10. Silver, N. Jtrix: Web Services beyond SOAP. JavaWorld. IDG 2002. Nr. 5.
http://www.javaworld.com/javaworld/jw-05-2002/jw-0503-jtrix_p.html

11. Fugetta, A. Picco, G. P., Vigna, G. Understanding Code Mobility. IEEE Transactions on
Software Engineering. Vol. 24, Nr. 5. pp. 342-361. IEEE 1998.

12. Ning, J. Q. Component-Based Software Engineering (CBSE). Proc. of the 5th Intl.
Symposium on Assessment of Software Tools (SAST). pp. 34-43. IEEE 1997.

13. Eckel, B. Thinking in Java. Prentice Hall. 2002.
14. Prosise, J. Programming Microsoft .NET. Microsoft Press. 2002.
15. Gong, L. Secure Java Class Loading. IEEE Internet Computing, Vol. 2, Nr. 6. pp. 56-61.

IEEE 1998.
16. Fayad, M. E., Schmidt, D. C., Johnson, R. E. Implementing Application Frameworks:

Object-Oriented Frameworks at Work. John Wiley & Sons. 1999.
17. Marvic, R., Merle, P., Geib, J.-M. Towards a Dynamic CORBA Component Platform. Proc.

of 2nd International Symposium on Distributed Objects and Applications (DOA).
Antwerpen, Belgium. pp. 305-314. IEEE 2000.

18. Apache Server Framework Avalon. http://jakarta.apache.org/avalon/framework/index.html
19. Goodwill, J. Apache Jakarta Tomcat. APress. 2001.
20. Zhang, C., Jacobsen, H.-A. Quantifying Aspects in Middleware Platforms. Proc. of the 2nd

International Conference on Aspect-Oriented Software Development (AOSD). pp. 130-139.
ACM 2003.

21. Watson, M. Sun One Services (Professional Middleware). Hungry Minds. 2002.
22. JBOSS Application Server. http://www.jboss.org
23. Lestideau, V., Belkhatir, N., Cunin, P.-Y. Towards Automated Software Component

Configuration and Deployment. Proc. of the 8th Intl. Conference on Information Systems
Analysis and Synthesis. IIIS 2002.

24. Paal, S., Kammüller, R., Freisleben, B. Java Class Deployment with Class Collections. Proc.
of the 3rd International Conference for Objects, Components, Architectures, Services and
Applications for a Networked World (NODE). Erfurt, Germany. pp. 144-158. 2002.

25. Liang, S., Bracha, G. Dynamic Class Loading In The Java Virtual Machine. Proc. of the
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). pp. 36-44. Canada 1998.

26. Paal, S., Kammüller, R., Freisleben, B. Customizable Deployment, Composition and
Hosting of Distributed Java Applications. Proc. of 4th Intl. Symposium on Distributed
Objects and Applications (DOA). LNCS 2519. Irvine, USA. pp. 845-865. Springer 2002.

27. Bernard, G., Kebbal, D. Component Search Service and Deployment of Distributed
Applications. Proc. of 3rd Intl. Symposium on Distributed Objects and Applications (DOA).
pp. 125-135. IEEE 2001.

28. Crnkovic, I., Hnich, B., Jonsson, T., Kiziltan, Z. Specification, Implementation, and
Deployment of Components. Communications of the ACM. Vol. 45, Nr. 10. pp. 35-40.
ACM 2002.

29. Cusumano, M. A., Yoffie, D. B. What Netscape learned from Cross-Platform Software
Development. Communications of the ACM. Vol. 42, Nr. 10. pp. 72-78. ACM 1999.

30. Fleischmann, M., Strauss, W., Novak, J., Paal, S., Müller, B., Blome, G., Peranovic, P.,
Seibert, C., Schneider, M. netzspannung.org - An Internet Media Lab for Knowledge
Discovery in Mixed Realities. In Proc. of 1st Conference on Artistic, Cultural and Scientific
Aspects of Experimental Media Spaces (CAST01). St. Augustin, Germany. pp. 121-129.
Fraunhofer 2001.

31. AWAKE - Networked Awareness for Knowledge Discovery. Fraunhofer Institute for Media
Communication. St. Augustin, Germany. 2003. http://awake.imk.fraunhofer.de

32. Object Component Desktop. http://ocd.sourceforge.net

